

IGen: The Illinois Genomics Execution Environment
Subho Sankar Banerjee, Ravishankar K. Iyer (Advisor)
University of Illinois at Urbana-Champaign

Goals
• Identify system performance bottlenecks in

variant calling workflows running on
extreme scale systems

• Identify algorithmic patterns in the variant
calling workflow to exploit available
parallelism

• Inform the design of future genomics
algorithms and their implementations on
large computing systems

• Identifies and characterizes mutations in NGS data
• Map NGS data to reference genome
• Correct for noisy data
• Differentiate strings in the presence of noise

and ploidy
• First phase of the personalized medicine flow
• Recurrently used
• Data intensive part of NGS analytics

Application: Variant Calling Workflow

Performance Bottlenecks

Walltime for human genome @ 50x coverage

• 43.7 ± 0.01 h on a single node

• 28.3 ± 0.2 h on 22 Blue-Waters nodes

• Very poor resource utilization

• IO dependent performance limitations:

• File system as
distributed
memory
• Htslib:

Inefficient for
distributed file
systems
• Sorting large

alignments on-
disk

This research is part of the Blue Waters sustained-petascale computing project, which is supported
by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of
Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications.
This material is based upon work supported in part by the National Science Foundation under Grant
No. CNS 13-37732.

Acknowledgements

Efficient NGS Analytics
Genome Analytics as Data-Flow Graphs

• “Kernels” (Vertices): Data transformations

• “Patterns” (Edges): Data dependencies

Calculate
Permutations

Discard
Poor matches

Map Map

Calculate
Alignment Score

Aligned
NGS DataNGS Data

Tree Reduce

Find Seed
(K-Mer) Locations

Merge Seed
Index

Reference
Sequence

All-to-All
Shuffle

Find Seed
Matches

Map

Tree Reduce

Find k-Best
Locations

Seed Index

INDEXING ALIGNMENT

Landau-Vishkin
Algorithm

Prefix Match
Algorithm

1: ACGTACGA
2: ACGATATAC
3: ACAAACAA
4: CCTATATTC

ACGTACGAAA
TTACATCTTAT
GTATCATCGA

…

Single Ended NGS Read Alignment as a DFG

Workflow stage Kernels
Error Correction K-mer computation

Alignment K-mer computation, prefix tree,
Edit-distance computation

Indel Re-Alignment Edit-distance computation, Table
lookup

Re-Calibration Yates correction, Table lookup

Variant Calling Entropy, Convolution, Assembly,
Edit-distance, Bayesian inference

Common kernels in the Variant Calling Workflow

Distributed DFG executions over heterogeneous
clusters

Preliminary Results

• Execution Engine: Runtime framework for distributed
data-parallel executions of data flow graphs on
heterogeneous clusters

• Illinois Genomics Execution Environment: Accelerated
genomic analyses tools for ExEn

• Synthetic human chromosome 1 @ 50x
• IGen Aligner (vs. SNAP)
• Single Node: 1.2x (35 min to 30 min)
• Multiple Node (10): 14x

• IGen Variant Caller (vs. GATK HaplotypeCaller)
• Single Node: 9x (36 min to 4.1 min)
• Multiple Node (10): 81x

• Measurement driven study of performance
bottlenecks in existing NGS analytics tools

• Similar performance pathologies across
multiple tools. Scope for system level
optimization

• Present a data-flow based abstraction for NGS
analytics

• Demonstrate preliminary results of significant
performance acceleration

• Simpler to build high performance parts

Conclusions

We would like to thank Zhengping Wang,
Varun Bahl, Valerio Formicola, Luidmila
Mainzer, Arjun P. Athreya, Zachary
Stephens, Zbigniew Kalbarczyk and Victor
Jongeneel for their help, support and
advice

Task Farm

Send
Task

Controller

Done

Communication Primitives (RDMA/MPI)

Distributed PGAS Memory and
Remote Calls

Task Scheduler Language
Wrappers

MMAP IO

Fault
Tolerance

Data Formats

ParsersData Flow
Graph

Computational Kernels

Synchronization
Patterns

IG
en

ExEn

High level view of the ExEn-IGen framework

Ongoing Work
Improved Kernel Scheduling

Deployment Mechanisms

Accelerators
• Explore the use of GPUs for

computationally heavy kernels
• Custom hardware accelerators

• Containerized deployments using Docker
• Integration with HDFS and Tachyon

• Optimal task assignment under
constraints of:
• Affinity
• Shared resource contention
• Data Locality

Performance Enhancements:
• Distributed execution of kernel functions
• RDMA to cut down data-serialization costs
• RPC: Control Transfer
• PGAS Memory: Data Transfer

• Efficient data formats
• Columnar store
• Use in-memory representation
• Memory Mapped IO

• High performance kernel functions

• Implicitly data parallel

• Composable and pluggable model

• Reuse of computational kernels

• Potential for system level optimizations
• Potential for accelerators

• Data filtering process
• In: 100GB
• Out: 50 MB

• Best Practices
Workflow:
• BWA for

alignment
• GATK for BQSR

and realignment
• GATK for SNP

calling

• Data-parallel
distributed
computationVariant Calling and Genotyping Workflow

Error Correction

Read Mapping
Alignment/Assembly

Realignment, Dedup
Recalibration

Variant Calling
SNP

Variant Calling
Structural Variations

!

!

NGS Sequencing

• Compute dependent performance limitations:

• Serialization
across threads
in GATK

• Poor cache
locality in Java

