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Goals
• Identify system performance bottlenecks in 

variant calling workflows running on 
extreme scale systems

• Identify algorithmic patterns in the variant 
calling workflow to exploit available 
parallelism

• Inform the design of future genomics 
algorithms and their implementations on 
large computing systems

• Identifies and characterizes mutations in NGS data
• Map NGS data to reference genome
• Correct for noisy data
• Differentiate strings in the presence of noise 

and ploidy
• First phase of the personalized medicine flow
• Recurrently used
• Data intensive part of NGS analytics

Application: Variant Calling Workflow

Performance Bottlenecks

Walltime for human genome @ 50x coverage

• 43.7 ± 0.01 h on a single node

• 28.3 ± 0.2 h on 22 Blue-Waters nodes

• Very poor resource utilization

• IO dependent performance limitations:

• File system as 
distributed 
memory
• Htslib: 

Inefficient  for  
distributed file 
systems
• Sorting large 

alignments on-
disk
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Efficient NGS Analytics
Genome Analytics as Data-Flow Graphs

• “Kernels” (Vertices): Data transformations

• “Patterns” (Edges): Data dependencies
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Single Ended NGS Read Alignment as a DFG

Workflow stage Kernels
Error Correction K-mer computation

Alignment K-mer computation, prefix tree, 
Edit-distance computation 

Indel Re-Alignment Edit-distance computation, Table 
lookup

Re-Calibration Yates correction, Table lookup

Variant Calling Entropy, Convolution, Assembly, 
Edit-distance, Bayesian inference

Common kernels in the Variant Calling Workflow

Distributed DFG executions over heterogeneous 
clusters

Preliminary Results

• Execution Engine: Runtime framework for distributed 
data-parallel executions of data flow graphs on 
heterogeneous clusters

• Illinois Genomics Execution Environment: Accelerated 
genomic analyses tools for ExEn

• Synthetic human chromosome 1 @ 50x
• IGen Aligner (vs. SNAP)
• Single Node: 1.2x (35 min to 30 min)
• Multiple Node (10): 14x 

• IGen Variant Caller (vs. GATK HaplotypeCaller)
• Single Node: 9x (36 min to 4.1 min)
• Multiple Node (10): 81x

• Measurement driven study of performance 
bottlenecks in existing NGS analytics tools

• Similar performance pathologies across 
multiple tools. Scope for system level 
optimization

• Present a data-flow based abstraction for NGS 
analytics

• Demonstrate preliminary results of significant 
performance acceleration

• Simpler to build high performance parts

Conclusions
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High level view of the ExEn-IGen framework

Ongoing Work
Improved Kernel Scheduling

Deployment Mechanisms

Accelerators
• Explore the use of GPUs for 

computationally heavy kernels
• Custom hardware accelerators

• Containerized deployments using Docker
• Integration with HDFS and Tachyon

• Optimal task assignment under 
constraints of:
• Affinity
• Shared resource contention 
• Data Locality

Performance Enhancements:
• Distributed execution of kernel functions
• RDMA to cut down data-serialization costs
• RPC: Control Transfer
• PGAS Memory:  Data Transfer

• Efficient data formats
• Columnar store
• Use in-memory representation
• Memory Mapped IO

• High performance kernel functions

• Implicitly data parallel

• Composable and pluggable model

• Reuse of computational kernels

• Potential for system level optimizations
• Potential for accelerators

• Data filtering process
• In: 100GB
• Out: 50 MB

• Best Practices 
Workflow:
• BWA for 

alignment
• GATK for BQSR 

and realignment
• GATK for SNP 

calling

• Data-parallel 
distributed 
computationVariant Calling and Genotyping Workflow
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NGS Sequencing

• Compute dependent performance limitations:

• Serialization 
across threads 
in GATK

• Poor cache 
locality in Java


