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Contributions
• Design	and	implementation	for	an	accelerator	to	
compute	the	Forward	Algorithm (FA)	on	Pair-
Hidden	Markov	Models (PHMM)	models.

• Demonstrate	value	of	the	accelerator	supporting	
computational	genomics	workflows	where	PHMM	
is	used	to	identify	mutations	in	genomes

• Optimize	accelerator	architecture	for	both	the	
algorithm	and	common	input	data	characteristics

• Reduce	compute	time:	14.85× higher	throughput
• Reduce	operational	cost	(in	terms	of	energy	
consumption):	147.49× higher	throughput	per	
unit	energy
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Forward	Algorithm	on	Pair-HMM	Models
• PHMM	models	are	Bayesian	multinets that	allow	for	a	
probabilistic	interpretation	of	the	alignment	problem	
• An	alignment	models	the	homology	between	two	sequences	via	a	

series	of	mutations,	insertions,	and	deletions	of	nucleotides.	

• FA	algorithm	computes	of	statistical	similarity	by	
considering	all	alignments	between	two	sequences	and	
computing	the	overall	alignment	probability	by	summing	
over	them

• Can	be	described	by	the	following	equations
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PHMM	Forward	Algorithm	in	Bioinformatics
• PHMMs	form	the	basis	of	the	variant	
detection	tool	GATK 
HaplotypeCaller

• Used	to	pick	n-best	haplotypes	from	by	
maximizing	likelihood	of	a	read	originating	
from	the	haplotype
• FA	algorithm	used

• Constitutes	>70% of	the	runtime	of	the	
GATK	HaplotypeCaller

• Executes	>3E7 times	for	a	standard	clinical	
human	dataset

3
Diagram	from	GATK	Documentation:	https://software.broadinstitute.org/gatk/documentation/article.php?id=4148



Shortcomings	of	Related	Work
• Past	work	explores	use	of	FPGAs/ASICs

• Based	on	systolic	array	designs
• Exploit	anti-diagonal	parallelism	in	
recurrence	pattern

• Common	shortcoming	is	that	they	are	
optimized	only	for	the	algorithm	and	not	
input	data	characteristics
• Input	size	variability	can	lead	to	idle	cycles	
for	systolic	array	based	designs.
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CDF	shows	nearly	uniform	distribution	of	
input	sizes	for	small	(<250)	and	large	
(>350)	input	string	size	for	computation	on	
NA12878	sample
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Our	Design
• Design	Goal: Optimize	design	to	execute	different	input	sizes	in	parallel

• Expend	chip	budget	on	maximizing	inter-task	parallelism
• Handle	intra-task	parallelism	through	aggressive	pipelining
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Processing	Element	(PE)	Design

• Goal: Schedule	operations	to	minimize	idle	cycles
• Schedule	presented	above	has	no	idle	cycles
• Schedule	temporally	multiplexes	the	adders	and	multipliers
• Entire	pipeline	is	8-deep	(8	Operations	in	flight	at	a	time)
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Minimize	Storage	Requirements
• Temporary	scratchpad	space	is	
required	to	store	intermediate	
outputs	produced	from	the	FA	
algorithm

• We	minimize	this	space	by	following	
the	anti-diagonal	recursion	pattern	
of	the	FA	algorithm

• As	a	result,	we	need	only	O(L) space	
instead	of	O(L2) space	to	store	entire	
matrix.
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Dealing	with	Accelerator	Invocation	Overheads
• Accelerator	invocation	overhead	significantly	
reduces	performance	because	of	OS	overhead	of	
initializing	accelerator
• Solution:	Amortize	cost	of	accelerator	invocation	by	
batching	multiple	invocations
• OS	sends	batch	of	tasks	to	acc.	Hardware	dist across	PEs

• Demonstrate	several	approaches	to	select	task	
batches
• Simple	task	batching
• Common	prefix	memoization
• FA	on	partially	ordered	strings
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Task	batching: Significant	drop	in	mean	latency	of	
a	PHMM	task	when	OS	overhead	is	amortized	over	
large	batches



Common	Prefix	Memoization
• Similar	inputs	to	PHMM)	have	common	prefixes
• Naïve	algorithm	recomputes PHMM	for	all	pairs	of	
strings

• Our	solution:
• Construct	a	prefix	trie to	find	the	longest	common	
prefix	in	an	input	task	batch

• Compute	PHMM	FA	for	prefix	only	once
• Saves	compute	time	and	host-accelerator bandwidth
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• Example
• (AAACGCA,	AAACCGG);	(AAACGCC,	AAACCGG);	(AAACGCG,	AAACCGG)
• Read	(Input	1)	has	common	prefix	for	a	single	haplotype	(Input	2)
• Construct	TRIE	for	Input	1
• Precompute	matrix	for	prefix	on	accelerator
• Compute	last	row	and	column	on	host	CPU



FA	on	Partially	Ordered	Strings
• Inputs	to	the	PHMM	accelerator	in	GATK	is	
computed	from	DeBruijn graphs

• Core	Idea:
• Do	not	dispatch	multiple	paths	from	DeBruijn
graphs	as	separate	tasks

• Dispatch	entire	graph	at	same	time

• Present	an	extension	of	the	POA	algorithm	
[1]	for	computing	FA	between	single	read	
and	entire	DeBruijn graph

10

A
C

C TA C

A

A

A
C

G C T

A
C
A

A

Traditional PHMM 
Dependency Lattice

POA based PHMM 
Dependency Lattice

[1]	C.	Lee,	C.	Grasso,	and	M.	F.	Sharlow,	“Multiple	sequence	alignment	using	
partial	order	graphs,”	Bioinformatics,	vol.	18,	no.	3,	pp.	452–464,	Mar	2002.	



Results:	Performance	Benchmarking
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[12] (Best GPU)

[13] (Best FPGA)

Power8 Chip

• 14.85× higher	throughput than	an	8-core	CPU	baseline	
(that	uses	SIMD	and	multi-threading)

• 147.49× improvement	in	throughput	per	unit	of	energy
expended

Performance	of	the	accelerator	in	a	PHMM	micro-
benchmark
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Amdahl’s Law Limit

Performance	of	the	end-to-end	GATK	HaplotypeCaller	
application

• 3.287× speedup over	CPU-only	baseline
• 3.48× is	maximum	attainable	speedup	accroding	to	

Amdahl’s	Law
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Results:	On-Chip	Resource	Utilization

• The	use	of	logic	slices	is	the	limiting	factor
• Potential	for	larger	gains	in	micro-benchmark	performance	for	larger	FPGAs	

• Memory	bandwidth	becomes	a	bottleneck	[Simulation	results	in	paper]
• Negligible	gains	to	be	had	in	terms	of	end-to-end	application	performance

• Already	close	to	Amdahl’s	law	limit
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Conclusions
• We demonstrate an FPGA based accelerator for the PHMM FA algorithm
that achieves
• 14.85× higher throughput than CPU baseline
• 147.49× higher throughput per unit energy expended

• Immediate application in variant discovery and genotyping workloads

• Takeaway: Design methodology of using input data characteristics in
addition to algorithmic characteristics to specialize accelerator design can
be more generally
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Questions?
• Code	available	at	https://github.com/CSLDepend/PairHMM
• Email	authors	at	ssbaner2@illinois.edu
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