

CSL | Coordinated Science Lab COLLEGE OF ENGINEERING Subho S. Banerjee, Mohamed el-Hadedy, Ching Y. Tan, Zbigniew T. Kalbarczyk, Steve Lumetta, Ravishankar K. Iyer

On Accelerating Pair-HMM Computations in Programmable Hardware

Contributions

- Design and implementation for an accelerator to compute the *Forward Algorithm* (FA) on *Pair-Hidden Markov Models* (PHMM) models.
- Demonstrate value of the accelerator supporting computational genomics workflows where PHMM is used to identify mutations in genomes
- Optimize accelerator architecture for both the algorithm and common input data characteristics
- Reduce compute time: **14.85**× higher throughput
- Reduce operational cost (in terms of energy consumption): 147.49× higher throughput per unit energy

Citations are consistent with those in paper

csl.illinois.edu

COLLEGE OF ENGINEERING

Forward Algorithm on Pair-HMM Models

- PHMM models are Bayesian multinets that allow for a probabilistic interpretation of the alignment problem
 - An alignment models the homology between two sequences via a series of mutations, insertions, and deletions of nucleotides.
- FA algorithm computes of statistical similarity by considering all alignments between two sequences and computing the overall alignment probability by summing over them
- Can be described by the following equations

$$\begin{array}{rcl} f_M(i,j) &=& P(a_{mm}f_M(i-1,j-1) + \\ && a_{im}f_I(i-1,j-1) + \\ && a_{dm}f_D(i-1,j-1)) \\ f_I(i,j) &=& a_{mi}f_M(i-1,j) + a_{ii}f_I(i-1,j) \\ f_D(i,j) &=& a_{md}f_M(i,j-1) + a_{dd}f_D(i,j-1) \end{array}$$

Equations describe anti-diagonal data-dependecies

PHMM Forward Algorithm in Bioinformatics

- PHMMs form the basis of the variant detection tool GATK HaplotypeCaller
- Used to pick n-best haplotypes from by maximizing likelihood of a read originating from the haplotype
 - FA algorithm used
- Constitutes >70% of the runtime of the GATK HaplotypeCaller
- Executes >3E7 times for a standard clinical human dataset

3

COLLEGE OF ENGINEERING

Diagram from GATK Documentation: https://software.broadinstitute.org/gatk/documentation/article.php?id=4148

Shortcomings of Related Work

- Past work explores use of FPGAs/ASICs
 - Based on systolic array designs
 - Exploit anti-diagonal parallelism in recurrence pattern
- Common shortcoming is that they are optimized only for the algorithm and not input data characteristics
 - Input size variability can lead to idle cycles for systolic array based designs.

CDF shows nearly uniform distribution of input sizes for small (<250) and large (>350) input string size for computation on NA12878 sample

ILLINOIS CSL | Coordinated Science Lab

Our Design

• Design Goal: Optimize design to execute different input sizes in parallel

Specialized data path and

schedule to ensure that

- Expend chip budget on maximizing inter-task parallelism
- Handle intra-task parallelism through aggressive pipelining

ILLINOIS CSL | Coordinated Science Lab

Processing Element (PE) Design

Circuit representation of the computation datapath

- Goal: Schedule operations to minimize idle cycles
 - Schedule presented above has no idle cycles
 - Schedule temporally multiplexes the adders and multipliers
 - Entire pipeline is 8-deep (8 Operations in flight at a time)

Minimize Storage Requirements

- Temporary scratchpad space is required to store intermediate outputs produced from the FA algorithm
- We minimize this space by following the anti-diagonal recursion pattern of the FA algorithm
- As a result, we need only O(L) space instead of O(L²) space to store entire matrix.

Dealing with Accelerator Invocation Overheads

- Accelerator invocation overhead significantly reduces performance because of OS overhead of initializing accelerator
- Solution: Amortize cost of accelerator invocation by batching multiple invocations
 - OS sends batch of tasks to acc. Hardware dist across PEs
- Demonstrate several approaches to select task batches
 - Simple task batching
 - Common prefix memoization
 - FA on partially ordered strings

Task batching: Significant drop in mean latency of a PHMM task when OS overhead is amortized over large batches

Common Prefix Memoization

- Similar inputs to PHMM) have common prefixes
- Naïve algorithm recomputes PHMM for all pairs of strings
- Our solution:
 - Construct a prefix trie to find the longest common prefix in an input task batch
 - Compute PHMM FA for prefix only once
 - Saves compute time and host-accelerator bandwidth
- Example
 - (AAACGCA, AAACCGG); (AAACGCC, AAACCGG); (AAACGCG, AAACCGG)
 - Read (Input 1) has common prefix for a single haplotype (Input 2)
 - Construct TRIE for Input 1
 - Precompute matrix for prefix on accelerator
 - Compute last row and column on host CPU

FA on Partially Ordered Strings

- Inputs to the PHMM accelerator in GATK is computed from DeBruijn graphs
- Core Idea:
 - Do not dispatch multiple paths from DeBruijn graphs as separate tasks
 - Dispatch entire graph at same time
- Present an extension of the POA algorithm
 [1] for computing FA between single read
 and entire DeBruijn graph

Traditional PHMM Dependency Lattice

POA based PHMM Dependency Lattice

[1] C. Lee, C. Grasso, and M. F. Sharlow, "Multiple sequence alignment using partial order graphs," *Bioinformatics*, vol. 18, no. 3, pp. 452–464, Mar 2002.

10 COLLEGE OF ENGINEERING

Results: Performance Benchmarking

Performance of the accelerator in a PHMM microbenchmark

- 14.85× higher throughput than an 8-core CPU baseline (that uses SIMD and multi-threading)
- 147.49× improvement in throughput per unit of energy expended

Performance of the end-to-end GATK HaplotypeCaller application

- 3.287× speedup over CPU-only baseline
- 3.48× is maximum attainable speedup accroding to Amdahl's Law

11 COLLEGE OF ENGINEERING

ILLINOIS CSL | Coordinated Science Lab

Results: On-Chip Resource Utilization

Physical Layout on a Xilinx XC7VX6905T

- The use of logic slices is the limiting factor
- Potential for larger gains in micro-benchmark performance for larger FPGAs
 - Memory bandwidth becomes a bottleneck [Simulation results in paper]
- Negligible gains to be had in terms of end-to-end application performance
 - Already close to Amdahl's law limit

csl.illinois.edu

12 COLLEGE OF ENGINEERING

Conclusions

- We demonstrate an FPGA based accelerator for the PHMM FA algorithm that achieves
 - 14.85× higher throughput than CPU baseline
 - 147.49× higher throughput per unit energy expended
- Immediate application in variant discovery and genotyping workloads
- **Takeaway:** Design methodology of using input data characteristics in addition to algorithmic characteristics to specialize accelerator design can be more generally

Questions?

- Code available at <u>https://github.com/CSLDepend/PairHMM</u>
- Email authors at ssbaner2@illinois.edu

