
On	Accelerating	Pair-HMM	Computations	
in	Programmable	Hardware

Subho	S.	Banerjee,	Mohamed	el-Hadedy,	Ching	Y.	Tan,
Zbigniew T.	Kalbarczyk,	Steve	Lumetta,	Ravishankar	K.	Iyer



Contributions
• Design	and	implementation	for	an	accelerator	to	
compute	the	Forward	Algorithm (FA)	on	Pair-
Hidden	Markov	Models (PHMM)	models.

• Demonstrate	value	of	the	accelerator	supporting	
computational	genomics	workflows	where	PHMM	
is	used	to	identify	mutations	in	genomes

• Optimize	accelerator	architecture	for	both	the	
algorithm	and	common	input	data	characteristics

• Reduce	compute	time:	14.85× higher	throughput
• Reduce	operational	cost	(in	terms	of	energy	
consumption):	147.49× higher	throughput	per	
unit	energy

�
��
��
��
��
���
���
���
���
���

� � � � � �� �� �� �� �� ���
��
�
��
��
��
�
��
��
��
��
��
�
��
�

���������� ����������

[6]

[10] [11]

[13]

[12]

This paper

GPU

Other FPGA

CPU

Citations	are	consistent	with	those	in	paper

1



Forward	Algorithm	on	Pair-HMM	Models
• PHMM	models	are	Bayesian	multinets that	allow	for	a	
probabilistic	interpretation	of	the	alignment	problem	
• An	alignment	models	the	homology	between	two	sequences	via	a	

series	of	mutations,	insertions,	and	deletions	of	nucleotides.	

• FA	algorithm	computes	of	statistical	similarity	by	
considering	all	alignments	between	two	sequences	and	
computing	the	overall	alignment	probability	by	summing	
over	them

• Can	be	described	by	the	following	equations

2

Symbol in 
Sequence 2

Symbol in 
Sequence 1

Hidden
State

Transitions between hidden states

Plate
Class Node

Equations	describe	anti-diagonal	data-dependecies



PHMM	Forward	Algorithm	in	Bioinformatics
• PHMMs	form	the	basis	of	the	variant	
detection	tool	GATK 
HaplotypeCaller

• Used	to	pick	n-best	haplotypes	from	by	
maximizing	likelihood	of	a	read	originating	
from	the	haplotype
• FA	algorithm	used

• Constitutes	>70% of	the	runtime	of	the	
GATK	HaplotypeCaller

• Executes	>3E7 times	for	a	standard	clinical	
human	dataset

3
Diagram	from	GATK	Documentation:	https://software.broadinstitute.org/gatk/documentation/article.php?id=4148



Shortcomings	of	Related	Work
• Past	work	explores	use	of	FPGAs/ASICs

• Based	on	systolic	array	designs
• Exploit	anti-diagonal	parallelism	in	
recurrence	pattern

• Common	shortcoming	is	that	they	are	
optimized	only	for	the	algorithm	and	not	
input	data	characteristics
• Input	size	variability	can	lead	to	idle	cycles	
for	systolic	array	based	designs.

�

���

���

���

���

���

���

���

���

���

�

��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
��
��
�
��
��
��
���
��

������ ������ ����

CDF	shows	nearly	uniform	distribution	of	
input	sizes	for	small	(<250)	and	large	
(>350)	input	string	size	for	computation	on	
NA12878	sample

4



Our	Design
• Design	Goal: Optimize	design	to	execute	different	input	sizes	in	parallel

• Expend	chip	budget	on	maximizing	inter-task	parallelism
• Handle	intra-task	parallelism	through	aggressive	pipelining

5

250 MHz250 MHz

IBM Supplied 
POWER

Service Layer 
(PSL)

Internal Input 
Cache

Internal Output 
Cache

Serializer

Serializer

Serializer

Bus Array of
PEs

Bus
Scheduler

CAPI
Controller

Host-accelerator	
interface	using	IBM	

CAPI

Out	of	order	issue	unit	to	PEs	as	well	as	write	
back	logic	encapsulated	in	the	bus	scheduling	

strategy

400 MHz

Quality to “a” 
parameter 

lookup table

PHMM 
Data Path

Scratchpad Buffer

Memory
Scheduler

Address 
Generator

IEEE-754 encoded
“a” parameters

Calculated
“f ” metrics

Input “f ” 
metrics

Write
address

Read 
address

Output
“f ” metrics

ASCII encoded
quality parameters

Specialized	data	path	and	
schedule	to	ensure	that	
there	are	no	idle	cycles	

while	computing

Memory	scheduler	minimizes	scratchpad	
buffer	size	used	to	store	intermediate	

results	in	Scratchpad	buffer



Processing	Element	(PE)	Design

• Goal: Schedule	operations	to	minimize	idle	cycles
• Schedule	presented	above	has	no	idle	cycles
• Schedule	temporally	multiplexes	the	adders	and	multipliers
• Entire	pipeline	is	8-deep	(8	Operations	in	flight	at	a	time)

Multiplier 1

Multiplier 2

Adder

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time

Ai

Di
Gi
Ci

Bi
Ei
Fi

Li−6
Ki−4

Hi−1

Ii−1

Ji−1

A

A
D
G
C

B
E
F
L

D
G
C

E
F
L

B

H

H

K

K

I
J

I
J

Circuit	representation	of	the	
computation	datapath Gantt	chart	corresponding	to	schedule	of	operations

6



Minimize	Storage	Requirements
• Temporary	scratchpad	space	is	
required	to	store	intermediate	
outputs	produced	from	the	FA	
algorithm

• We	minimize	this	space	by	following	
the	anti-diagonal	recursion	pattern	
of	the	FA	algorithm

• As	a	result,	we	need	only	O(L) space	
instead	of	O(L2) space	to	store	entire	
matrix.

7

X

Completed blocks

Remaining blocks

Stored blocks Scratchpad
Memory

Computing “x”
overwrites unused
values

L

L

Recursion Lattice from Equation 1 Memory State

Fill memory along
anti-diagonal of the
recursion latticeCurrent block

X



Dealing	with	Accelerator	Invocation	Overheads
• Accelerator	invocation	overhead	significantly	
reduces	performance	because	of	OS	overhead	of	
initializing	accelerator
• Solution:	Amortize	cost	of	accelerator	invocation	by	
batching	multiple	invocations
• OS	sends	batch	of	tasks	to	acc.	Hardware	dist across	PEs

• Demonstrate	several	approaches	to	select	task	
batches
• Simple	task	batching
• Common	prefix	memoization
• FA	on	partially	ordered	strings

1

10

100

1000

1 10 100 1000 10000

La
te
nc
y
(μ
s)
/T
as
k

Batch Size (Tasks)

8

Task	batching: Significant	drop	in	mean	latency	of	
a	PHMM	task	when	OS	overhead	is	amortized	over	
large	batches



Common	Prefix	Memoization
• Similar	inputs	to	PHMM)	have	common	prefixes
• Naïve	algorithm	recomputes PHMM	for	all	pairs	of	
strings

• Our	solution:
• Construct	a	prefix	trie to	find	the	longest	common	
prefix	in	an	input	task	batch

• Compute	PHMM	FA	for	prefix	only	once
• Saves	compute	time	and	host-accelerator bandwidth

9

AAACGC

A
C

G

Compressed Trie

C
G

C
A

A
A

Haplotype

Precompute 
Prefix String

Reuse pre-
computed 

values

C
C

G
C

A
A

A

Compute 
last row

Haplotype

1

2

3

• Example
• (AAACGCA,	AAACCGG);	(AAACGCC,	AAACCGG);	(AAACGCG,	AAACCGG)
• Read	(Input	1)	has	common	prefix	for	a	single	haplotype	(Input	2)
• Construct	TRIE	for	Input	1
• Precompute	matrix	for	prefix	on	accelerator
• Compute	last	row	and	column	on	host	CPU



FA	on	Partially	Ordered	Strings
• Inputs	to	the	PHMM	accelerator	in	GATK	is	
computed	from	DeBruijn graphs

• Core	Idea:
• Do	not	dispatch	multiple	paths	from	DeBruijn
graphs	as	separate	tasks

• Dispatch	entire	graph	at	same	time

• Present	an	extension	of	the	POA	algorithm	
[1]	for	computing	FA	between	single	read	
and	entire	DeBruijn graph

10

A
C

C TA C

A

A

A
C

G C T

A
C
A

A

Traditional PHMM 
Dependency Lattice

POA based PHMM 
Dependency Lattice

[1]	C.	Lee,	C.	Grasso,	and	M.	F.	Sharlow,	“Multiple	sequence	alignment	using	
partial	order	graphs,”	Bioinformatics,	vol.	18,	no.	3,	pp.	452–464,	Mar	2002.	



Results:	Performance	Benchmarking

�
����
����
����
����
�����
�����
�����

� � �� �� �� �� �� �� �� ���
��
��
��
��
�
��
�
�
��
��

������ �� ���

��� � ����� ��� � ��������

[12] (Best GPU)

[13] (Best FPGA)

Power8 Chip

• 14.85× higher	throughput than	an	8-core	CPU	baseline	
(that	uses	SIMD	and	multi-threading)

• 147.49× improvement	in	throughput	per	unit	of	energy
expended

Performance	of	the	accelerator	in	a	PHMM	micro-
benchmark

�

���

�

���

�

���

�

���

� � �� �� �� �� �� �� �� ��

��
��
��
�

������ �� ���

���
������

Amdahl’s Law Limit

Performance	of	the	end-to-end	GATK	HaplotypeCaller	
application

• 3.287× speedup over	CPU-only	baseline
• 3.48× is	maximum	attainable	speedup	accroding	to	

Amdahl’s	Law

11



Results:	On-Chip	Resource	Utilization

• The	use	of	logic	slices	is	the	limiting	factor
• Potential	for	larger	gains	in	micro-benchmark	performance	for	larger	FPGAs	

• Memory	bandwidth	becomes	a	bottleneck	[Simulation	results	in	paper]
• Negligible	gains	to	be	had	in	terms	of	end-to-end	application	performance

• Already	close	to	Amdahl’s	law	limit

Physical	Layout	on	a	
Xilinx	XC7VX6905T

CAPI	
Interface

44	PEs

�

��

��

��

��

��

��

��

� � � � �� �� ��

�
���
��
��
��
�
��
�

������ �� ���

������
����
���

Clock
31%

Signals
31%

Logic
10%

BRAM
13%
DSP
8%

MMCM
4%

PCIe
4%

�
�
�
�
�
��
��
��
��
��
��

� � � � �� �� ��

��
�
��
��
�

������ �� ���

������ ������� ���

12



Conclusions
• We demonstrate an FPGA based accelerator for the PHMM FA algorithm
that achieves
• 14.85× higher throughput than CPU baseline
• 147.49× higher throughput per unit energy expended

• Immediate application in variant discovery and genotyping workloads

• Takeaway: Design methodology of using input data characteristics in
addition to algorithmic characteristics to specialize accelerator design can
be more generally

13



Questions?
• Code	available	at	https://github.com/CSLDepend/PairHMM
• Email	authors	at	ssbaner2@illinois.edu

14


