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Contributions

* Design and implementation for an accelerator to

compute the Forward Algorithm (FA) on Pair- 180
Hidden Markov Models (PHMM) models. 160 eeeegesedeeestenadeenates SRR
 Demonstrate value of the accelerator supporting 140 o e
. . |20 — o oo - . S\ emsccceccsisiisipithln
computational genomics workflows where PHMM 100 Y AT U S T S T

is used to identify mutations in genomes

o
o O

e Optimize accelerator architecture for both the
algorithm and common input data characteristics

N
o

N
o

* Reduce compute time: 14.85x higher throughput

o

Normalized Throughput/Watt

e Reduce operational cost (in terms of energy
consumption): 147.49x higher throughput per CPU
unit energy
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Forward Algorithm on Pair-HMM Models

Plate

* PHMM models are Bayesian multinets that allow for a sehunes 1 |O, / =
probabilistic interpretation of the alignment problem sseéTé’r?éi """"""""""""""
* Analignment models the homology between two sequencesviaa ) U e
series of mutations, insertions, and deletions of nucleotides. Hidden 0,
* FA algorithm computes of statistical similarity by ] m
considering all alignments between two sequences and Transitions between hidden states
computing the overall alignment probability by summing
over them Equations describe anti-diagonal data-dependecies

* Can be described by the following equations

%
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PHMM Forward Algorithm in Bioinformatics

H : 4 ) 4 N\

* PHMMS form the basis of the variant Identify ActiveRegions Assemble plausible haplotypes

detection tool GATK

Haplotypecal ler REF TATGiAATTT GGTATAGGCT G \ \/_\)/( soT

A T G) T \f\ N \G) o
A T G}
§ ? : + TATGAAATTGGTATAGGCT
* Used to pick n-best haplotypes from by . - 3 —> — -~
. . . . . o . T
maximizing likelihood of a read originating T - (-bamOut) & T @
from the haplotype S / - 7,
* FA algorithm used .
r ~ - N
Determine per-read likelihoods (PairHMM) Genotype sample
* Constitutes >70% of the runtime of the I — A A T Gl
) et , 0/0{0/1|1/1
GATK HaplotypeCaller e P T -)
ISR S S - A
. T el g Tl Alld

* Executes >3E7 times for a standard clinical (= ® - oom T @ ] | Ls+annotations

human dataset
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Shortcomings of Related Work

* Past work explores use of FPGAs/ASICs
* Based on systolic array designs

* Exploit anti-diagonal parallelism in
recurrence pattern

* Common shortcoming is that they are
optimized only for the algorithm and not
input data characteristics

* Input size variability can lead to idle cycles
for systolic array based designs.
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CDF shows nearly uniform distribution of
input sizes for small (<250) and large
(>350) input string size for computation on
NA12878 sample
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Our Design

* Design Goal: Optimize design to execute different input sizes in parallel
* Expend chip budget on maximizing inter-task parallelism

Specialized data path and

* Handle intra-task parallelism through aggressive pipelining schedule to ensure that

there are no idle cycles
while computing

250 MHz |nternal Input | 250 MHz Bus i Array of /400 MHz IEEE-754 encoded
Cache | T 1 PEs ASCIl encoded - —— @ parameters
1 I__> o e g / quality parameters Quality to “a t——pp MM =P ... OUtRUt
> 1 Seriali | I__> } =P parameter Data Path f” metrics
; | erializer |—> i / lookup table ata Pat
|-
—{ L
IBM Supplied 4-:» Input “f”’
POWER Bus | metrics “C j\lculat.e d
Service Layer » Scheduler < > ! \ f” metrics
*sh ! } \ Scratchpad Buffer
| Contr?ller ! \ 5
| > Read
< < } \ address
| 4%-» \ J Write
|nter2:a| ?utputi M \ Memory Address ¥ address
p— ache !
: ‘ Schedul Generator
Host-accelerator . . . A i ~a
Out of order issue unit to PEs as well as write

interface using IBM _ _ )
CAP| back logic encapsulated in the bus scheduling

strategy

Memory scheduler minimizes scratchpad
buffer size used to store intermediate
results in Scratchpad buffer ZERING
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Processing Element (PE) Design

s Sy
b A—»j\ EL
G —>ID—> |
C —IIT—> J
> Adder
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G —>m—>| | > o
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L 246810121416182022242628303!

Time

Circuit representation of the : .
P Gantt chart corresponding to schedule of operations

computation datapath

* Goal: Schedule operations to minimize idle cycles
* Schedule presented above has no idle cycles
* Schedule temporally multiplexes the adders and multipliers
* Entire pipeline is 8-deep (8 Operations in flight at a time)
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Minimize Storage Requirements

* Temporary scratchpad space is
required to store intermediate

Compfe cks C o s
outputs produced from the FA § e o e
algorithm values
* We minimize this space by following NS
the anti-diagonal recursion pattern i
of the FA algorithm Stored blocks§‘. Scratchpad ::Lfg?;;g;;al?:ﬁe
Current block Remaining b|OCkSE Memory recursion lattice
Recursion Lattice from Equation | { Memory State

* As a result, we need only O(L) space
instead of O(L?) space to store entire
matrix.
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Dealing with Accelerator Invocation Overheads

e Accelerator invocation overhead significantly
reduces performance because of OS overhead of
initializing accelerator

* Solution: Amortize cost of accelerator invocation by
batching multiple invocations

* OS sends batch of tasks to acc. Hardware dist across PEs

 Demonstrate several approaches to select task
batches
» Simple task batching
 Common prefix memoization
* FA on partially ordered strings
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Task batching: Significant drop in mean latency of

a PHMM task when OS overhead is amortized over
large batches
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Common Prefix Memoization

* Similar inputs to PHMM) have common prefixes Compressed Trie Precompute
Prefix String @
* Naive algorithm recomputes PHMM for all pairs of = aaacac " Haplotype | euse pre-
strings i } ! computed
_ G g . values
* Our solution: oL S EF\V onlotye
e Construct a prefix trie to find the longest common O T i %
prefix in an input task batch ~~~—/ (; “““ <
. : ompute
Compute PHMM FA for prefix only once (3 ) last row 8
—» O

* Saves compute time and host-accelerator bandwidth

Example
 (AAACGCA, AAACCGG); (AAACGCC, AAACCGG); (AAACGCG, AAACCGG)
* Read (Input 1) has common prefix for a single haplotype (Input 2)
e Construct TRIE for Input 1
* Precompute matrix for prefix on accelerator
 Compute last row and column on host CPU
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FA on Partially Ordered Strings

* Inputs to the PHMM accelerator in GATK is

computed from DeBruijn graphs :
rcct | %0
e Core Idea: A A L —
C - C
* Do not dispatch multiple paths from DeBruijn E |
graphs as separate tasks A A \
* Dispatch entire graph at same time A A N
Traditional PHMM | POA based PHMM
* Present an extension of the POA algorithm Dependency Lattice | Dependency Lattice

[1] for computing FA between single read
and entire DeBruijn graph

[1] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using
partial order graphs,” Bioinformatics, vol. 18, no. 3, pp. 452-464, Mar 2002.
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Results: Performance Benchmarking

Performance of the accelerator in a PHMM micro- Performance of the end-to-end GATK HaplotypeCaller

benchmark application
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* 14.85x higher throughput than an 8-core CPU baseline - 3.287x speedup over CPU-only baseline
(that uses SIMD and multi-threading) * 3.48x is maximum attainable speedup accroding to

* 147.49% improvement in throughput per unit of energy Amdahl’s Law

expended
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Results: On-Chip Resource Utilization

Physical Layout on a

Xilinx XC7VX6905T
70 Static EEEEED Dynamic =3 GTH =23 I
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* The use of logic slices is the limiting factor 0 ; l e

* Potential for larger gains in micro-benchmark performance for larger FPGAs T a4 l A
* Memory bandwidth becomes a bottleneck e i
N Li.:]

* Negligible gains to be had in terms of end-to-end application performance
* Already close to Amdahl’s law limit
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Conclusions

* We demonstrate an FPGA based accelerator for the PHMM FA algorithm
that achieves

e 14.85x higher throughput than CPU baseline
e 147.49x higher throughput per unit energy expended

* Immediate application in variant discovery and genotyping workloads

 Takeaway: Design methodology of using input data characteristics in
addition to algorithmic characteristics to specialize accelerator design can
be more generally
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Questions?

* Code available at https://github.com/CSLDepend/PairHMM
* Email authors at ssbaner2@illinois.edu
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