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Abstract
• Rapidly generated short-nucleotide fragments and huge 

genomic-data easily overwhelm today’s HPC infrastructure

• Levenshtein distance (edit-distance) is a crucial step in 
processing in short-read data for genomic analysis 

• By uniquely utilizing intrinsic delay of circuit as a proxy for 
computation, ASAP achieved 200x faster operation than 
equivalent C implementation on CPU. 

• Integrating ASAP on Altera Stratix V FPGA with IBM POWER 
8 via CAPI interface, our heterogeneous system achieved 
2.2x faster than an end-to-end alignment tool for 120-150 
bp short-read sequences.

• Short-read alignment – Process of mapping the 
sequenced reads to their most likely point of origin 
in the genome 

• Reads – Short fragments of sampled DNA

• Levenshtein distance (LD) computation –
responsible for 50–70% of short-read alignment 
runtime, which in tern 

Key Ideas:
• In most resequencing experiments, most 

nucleotides match the reference.
• Use this observation along with circuit-delay based 

computation (RaceLogic, ISCA15), to compute LD.

Motivation Experimental Results

Delay Logic

• Intrinsic circuit delay was utilized to replace arithmetic 
addition & min-operation

• With this novel computation method, ASAP rapidly 
computes Levenshtein Distance for short-read alignment.

• FPGA-implemented ASAP is compatible with CAPI 
interface, allowing more efficient high-throughput 
genomic data computation

• ASAP can be further applied to any problems where a 
total ordering of LDs need to be computed

We would like to thank IBM and NSF for the support of this
project. This material is based upon work supported in part
by the National Science Foundation under Grant No. CNS 13-
37732.
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::runThread()
   99.9% of time
   192 calls

SingleAlignerContext::runIterationThread()
   99.8% of time
   192 calls

ThreadSAMWriter::write()
 11.31% of time

 1.4E10 calls

MemMapFASTQReader::getNextRead()
 6.79% of time
 1.5E10 calls

BaseAligner::alignRead()
 81.6% of time

 1.2E10 calls

BaseAligner::BaseAligner()
 0.3% of time

 192 calls

LandauVishkin::computeEditDistance()
LandauVishkinWithCigar::computeEditDistance()

 59.1 % of time
 8.3E11 calls

GenomeIndex::lookupSeed()
 22.7 % of time

 6.1E10 calls

Case I (            )i ≥ j Case II (            )j ≥ i

T 1
1 (i, j) = jδM + (i− j)δI

T 2
1 (i, j) = iδM + (j − i)δD

ASAP: Using Delays to Compute Faster

Smith-Waterman & Needleman-Wunch Algorithm POWER 8 - FPGA Interface via CAPI
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Dynamic Programming based algorithm 
• Calculates the alignment score (Levenshtein 

distance) between read(q) and reference 
genome(r)

Key Ideas of Algorithm
• Matrix S of size lq x lr
• ∆: gap penalty
• (i, j)th Element of S – Minimum edit distances 

between strings Q[1 : i] and R[1 : j]

Matrix S with ∆(match) = 0, ∆(Mismatch) = 2, ∆(Insert) =  ∆(Delete)=1

Computing with Circuit Delays (RaceLogic, ISCA15) High-level Structure of the ASAP Design

Components of ASAP Delay Element (DE)
• 3-input signals connected to preceding DE
• 2-input signals to compare strings
• 3-input signals representing ∆

Computing LD Variants
• Smith-Waterman Algorithm: 2 cycles
• Needleman-Wunsch Algorithm: 4 cycles
• Landau-Vishkin Algorithm: Reset circuit after max tolerable delay 
• Values in Matrix – Clock cycle of when DE was triggered

Motivation: 
• Upper-left DE requires smaller NDE-bit 

counter & registers than lower right DE 
does.

• Values of T1, T2, and T3 are calculated with 
δ(Match) ≤ δ(Mismatch), δ(Insert), δ(Delete)

Comparison – 150(q) & 600(r) bp
• Area reduction by 4.9x
• From 2,880,000 down to 

587,000 FF’s

Performance of ASAP Accelerator

• Latency of the accelerator VS Input 
string size (assuming tile length 16) 

• The shared area – Simulated result of 
25th & 75th percentile

Resource Utilization & Power

• FPGA FF utilization VS Length of strings

End-to-End Comparison  
• Default LV SNAP Aligner VS 

ASAP-Integrated SNAP Aligner
� 2.2x Speedup

• Distribution of fraction of stalls in the accelerator 
pipeline due to unavailability of data at the PSL

Read
Size

CPU
Baseline

(µs)

ASAP
(µs) Speedup

64 1890 10.3 183x
128 2083 10.7 194x

192* 3326 16.4 203x
256* 3906 17.2 219x
320* 4484 18.9 237x

Read Length
32 64 128

ALM Utilization (%) 26 38 76
Total Power (mW) 5613 9642 19912

Rows marked with “*” are simulated results

CPU: IBM POWER8 S824L
FPGA: Nallatech 385 with Altera Stratix-V at 250MHz

Novelty: Approximate LD using Circuit Delays
• Match happens most often � Set delay to 0
• Approximation maintains total-ordering
� answers are still correct


