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Summary

Contributions:

*  Common mathematical kernels: Static analysis of genomic analyses algorithms

*  Performance Pathologies: Measurement driven diagnosis of performance bottlenecks

* |Gen: A scalable genomic data analytics framework which overcomes observed inefficiencies

“Variant Calling and Genotyping” Workflow as the driver

Baseline Runtime IGen Accelerated Runtime ** Speedup
Blue Waters - Single Node (CPU) 59 hr 28 hr 2.Ix

IBM Power 8 - Single Node (CPU + GPU + FPGA) 36 hr 1hr 5.3x, 3.2x
Blue Waters - 18 Nodes (CPU) - 2 hr 22x




CS L ® COORDINATED
e SCIENCE LAB

Outline

e (Genomics Primer: Variant Detection

Kernels for Genomics
e Performance Pathologies in State of the Art Genomics Pipelines

|Gen: The lllinois Genomics Execution Environment
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Overview: Variant Calling and Genotyping

Detecting and characterizing mutations in a sample genome
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Overview: Variant Calling and Genotyping

Detecting and characterizing mutations in a sample genome
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Diagnosis Personalized Medicine

e.g., Cancer
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Falling costs
— Capex: Cost of buying sequencing
machines
— Opex: Cost of sequencing genomes

Moore's Law

 Potential for large amounts of
sequence data to be generated over
a short span of time

NIH ) St
gename govisaueningoosts  Societally important problem
—  Scope for personalized medicine
changing healthcare delivery

T
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http://www.genome.gov/sequencingcosts
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Sequencing T et GATK Best Practices , .
= * The Broad Institute Best
.......... Practices Guidelines

Data Pre-processing >> Variant Discovery >> Preliminary Analyses
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R — Designed for workstations

o Recf“braﬁon Variari\tRecalibriation - */L_GW*are performance tuned
separately per variant type, look good? : 1 Tk
R Comp o ook good — Do not fit well in traditional

Analysis-Read! A
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Variants troubleshoot use in project

https://www.broadinstitute.org/gatk/guide/best-practices.php /

Analysis-Ready SNPs
Variants &Indels
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Outline

e Kernels for Genomics
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Computational Kernels

« Computational Kernels: Basic Mathematical Operations common to large number of
bioinformatics analysis

« Kernels enable system level optimizations effecting a large number of tools
« Clearly show commonalities between different tools performing the same analysis

 Provide an interface between algorithm designers and system designers

— Future benchmarks for data-intensive HPC machines

 Defines a simple data-flow abstraction for non-expert programmers (biologists)
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Kernels
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Kernels

Repeated kernel usage
across tools/stages

Workflow stage

Error Correction

Alignment

Indel Re-Alignment

[ Edlt distance computation |
¥ ¥ ¥ ¥ ¥ " ¥ W W

Re-Calibration

Yates correction

Variant Calling

Entropy, Convolution, Assembly,
Bayesian inference

Edit- dlstance|Pa|r—HMM

See paper for common kernels across multi-sequence alignment, metagenomics and phylageny
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Outline

e Performance Pathologies in State of the Art Genomics Pipelines
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Deploying genomics workflows on parallel systems

Split Reads -
UNIX split

Alignment -
BWA-MEM/SNAP

Merging/Sorting - SAMBAMBA +
SAMBLASTER

Realignment -
GATK

Variant Calling -
GATK

Merge Outputs -
UNIX cat

Sort by
Chromosome

Realignment & Variant

Alignment
Recalibration Calling

Data
Parallel

Serial

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Walltime
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Tools are not well suited for HPC machines

1000
Peak Pdfallel Compute

0.1 1 10 100

/FLUP/Byte \

Alignment BOSR, Variant Calling :
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Error : Variant
> . g Alignment . —D
Correction Calling
’,ff’ \e Unnecessary- S~eo
P reads and writes Ssao

* Implicit parallelism not
exploited
* No asynchronous IO

lleli 410 utilizati * Data parallelism not well
para ein an utilization exploited

D Disk Read D Disk Write D Computation c

* Chains of read-compute-write Ime
chains
* Poor exploitation of
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Practices Guide Workflow 16
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Variant Calling on Spark
ADAM and Avocado

*  Best performance - Best place to start!

»  ADAM: Extremely efficient data formats for parallel compute

Cumulative Probability

1.0

0.2 — Compression + Serialization
—— Serialization

0 2000 4000 6000 8000 10000 12000 14000 16000
CPU Time (s)

Time Spent in Serialization for ADAM
based file formats

e Several Problems

Serialization takes a lot of time
Fasy to program # Good performance
Single Node performance quite poor, Great Scalability

Non-trivial (12.3 %) amount of time spent in fault-
tolerance related computation/messaging

JVM - Garbage collection
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Outline

e |Gen: The lllinois Genomics Execution Environment



Key Idea: Decouple algorithms, schedule anc
accelerators

e Algorithm: What is computea
e Schedule: Where and when it is computed
» Accelerators: How it is computea
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Variant Calling and Genotyping in IGen

Detecting and characterizing mutations in a sample genome
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Enhancements in IGen

Succinct data representations

— All'tools use ASCII based in-memory representations
— Use 2 and 4 bit representation for Nucelotides/CIGAR

«  Asynchronous File 10

Column based data-structures to improve locality and aid vectorization

| | I:II:II:I
C | | | | |
I | | | I [ |

«  Compiler assisted and SIMD intrinsic based implementations of kernels

22
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e Bringing computer systems and analytics to precision medicine
— ExEnand IGen for accelerated NGS analysis
— NEAT and AssembleSV for quality control of NGS pipelines
— Statistical analysis for deriving actionable intelligence

23
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.. CompGen Machine

Knowledge

Continuous Monitoring

Timely Diagnosis

Personalized Drugs

Model Drug Response

New Biological Insight

7
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