ICSL: COORDINATED SCIENCE LAB

Efficient and Scalable Workflows for Genomic Analyses

Subho S. Banerjee, Arjun P. Athreya, Liudmila S. Mainzer, C. Victor Jongeneel, Wen-Mei Hwu, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer

Summary

Contributions:

- Common mathematical kernels: Static analysis of genomic analyses algorithms
- **Performance Pathologies**: Measurement driven diagnosis of performance bottlenecks
- **IGen**: A scalable genomic data analytics framework which overcomes observed inefficiencies

"Variant Calling and Genotyping" Workflow as the driver

	Baseline Runtime	IGen Accelerated Runtime **	Speedup
Blue Waters – Single Node (CPU)	59 hr	28 hr	2.1x
IBM Power 8 – Single Node (CPU + GPU + FPGA)	36 hr	11 hr	5.3x, 3.2x
Blue Waters – 10 Nodes (CPU)	-	2 hr	22x

Outline

- Genomics Primer: Variant Detection
- Kernels for Genomics
- Performance Pathologies in State of the Art Genomics Pipelines
- IGen: The Illinois Genomics Execution Environment

Overview: Variant Calling and Genotyping

Detecting and characterizing mutations in a sample genome

Overview: Variant Calling and Genotyping

Detecting and characterizing mutations in a sample genome

Overview: Variant Calling and Genotyping

Detecting and characterizing mutations in a sample genome

Noisy Data Polyploid Samples

The Genomic Data Deluge

http://www.genome.gov/sequencingcosts

- Falling costs
 - Capex: Cost of buying sequencing machines
 - **Opex**: Cost of sequencing genomes
- Potential for large amounts of sequence data to be generated over a short span of time
 - Societally important problem
 - Scope for personalized medicine changing healthcare delivery

Variant Discovery as a Workflow

The Broad Institute Best Practices Guidelines

- Tools come from disparate sources
 - Designed for workstations
 - *Few* are performance tuned
 - Do not fit well in traditional HPC

https://www.broadinstitute.org/gatk/guide/best-practices.php

Outline

- Genomics Primer: Variant Detection
- Kernels for Genomics
- Performance Pathologies in State of the Art Genomics Pipelines
- IGen: The Illinois Genomics Execution Environment

Computational Kernels

- **Computational Kernels**: Basic Mathematical Operations common to large number of bioinformatics analysis
- Kernels enable system level optimizations effecting a large number of tools
- Clearly show commonalities between different tools performing the same analysis
- Provide an interface between algorithm designers and system designers
 - Future benchmarks for data-intensive HPC machines
- Defines a simple data-flow abstraction for non-expert programmers (biologists)

Kernels

Single Ended NGS Read Alignment as a DFG

	Kernels	Repeated kernel usage across tools/stages		
Reference	NGS Data Prefix Match Algorithm	Landau-Viehkin Aligned NGS Data		
Workflow stage	ŀ	Kernels		
Error Correction	K-mer computation	K-mer computation		
Alignment	K-mer computation, Prefix	K-mer computation, Prefix Tree, Edit-distance computation		
Indel Re-Alignment	Edit-distance computation	Edit-distance computation		
Re-Calibration	Yates correction	Yates correction		
Variant Calling	Entropy, Convolution, Asser Bayesian inference	mbly, Edit-distance, Pair-HMM,		

See paper for common kernels across multi-sequence alignment, metagenomics and phylogeny

Outline

- Genomics Primer: Variant Detection
- Kernels for Genomics
- Performance Pathologies in State of the Art Genomics Pipelines
- IGen: The Illinois Genomics Execution Environment

Deploying genomics workflows on parallel systems

Tools are not well suited for HPC machines

Understanding Performance Issues

System resource utilization for phases of the Broad Institute Best Practices Guide Workflow

COORDINATED
SCIENCE LAB

Variant Calling on Spark

- Best performance Best place to start!
- ADAM: Extremely efficient data formats for parallel compute

Time Spent in Serialization for ADAM based file formats

- Several Problems
 - Serialization takes a lot of time
 - Easy to program ≠ Good performance
 - Single Node performance quite poor, Great Scalability
 - Non-trivial (12.3 %) amount of time spent in faulttolerance related computation/messaging
 - JVM Garbage collection

Outline

- Genomics Primer: Variant Detection
- Kernels for Genomics
- Performance Pathologies in State of the Art Genomics Pipelines
- IGen: The Illinois Genomics Execution Environment

Sequences to Systems

Key Idea: Decouple algorithms, schedule and accelerators

- Algorithm: What is computed
- Schedule: Where and when it is computed
- Accelerators: How it is computed

Variant Calling and Genotyping in IGen

Detecting and characterizing mutations in a sample genome

* Whole Human Genome @ 60x coverage ** Default tool parameters

Enhancements in IGen

- Succinct data representations
 - All tools use ASCII based in-memory representations
 - Use 2 and 4 bit representation for Nucelotides/CIGAR
- Asynchronous File IO
- Column based data-structures to improve locality and aid vectorization

• Compiler assisted and SIMD intrinsic based implementations of kernels

Conclusions

- Bringing computer systems and analytics to precision medicine
 - ExEn and IGen for accelerated NGS analysis
 - NEAT and AssembleSV for quality control of NGS pipelines
 - Statistical analysis for deriving actionable intelligence

Medical

CompGen Machine

Timely Diagnosis

Personalized Drugs

Model Drug Response

New Biological Insight