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Summary
Contributions:
• Common mathematical kernels: Static analysis of genomic analyses algorithms
• Performance Pathologies: Measurement driven diagnosis of performance bottlenecks
• IGen: A scalable genomic data analytics framework which overcomes observed inefficiencies

“Variant Calling and Genotyping” Workflow as the driver

Baseline Runtime IGen Accelerated Runtime ** Speedup

Blue Waters – Single Node (CPU) 59 hr 28 hr 2.1x

IBM Power 8 – Single Node (CPU + GPU + FPGA) 36 hr 11 hr 5.3x, 3.2x

Blue Waters – 10 Nodes (CPU) - 2 hr 22x
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Outline
• Genomics Primer: Variant Detection

• Kernels for Genomics

• Performance Pathologies in State of the Art Genomics Pipelines

• IGen: The Illinois Genomics Execution Environment
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Overview: Variant Calling and Genotyping
Detecting and characterizing mutations in a sample genome

A C A G G T A T A T C T T T G A T A …Reference Genome
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SNP Deletion Insertion
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Overview: Variant Calling and Genotyping
Detecting and characterizing mutations in a sample genome
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Sample Genome ???
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NGS Sequencing 
Technology
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Overview: Variant Calling and Genotyping
Detecting and characterizing mutations in a sample genome

A C A G G T A T A T C T T T - G A T A …Reference Genome

Sample Genome

~3GB

~200GB (compressed)
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Noisy Data Polyploid Samples

Diagnosis
e.g., Cancer

Personalized Medicine
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The Genomic Data Deluge
• Falling costs 

– Capex: Cost of buying sequencing 
machines

– Opex: Cost of sequencing genomes

• Potential for large amounts of 
sequence data to be generated over 
a short span of time

• Societally important problem
– Scope for personalized medicine 

changing healthcare delivery

http://www.genome.gov/sequencingcosts 6



https://www.broadinstitute.org/gatk/guide/best-practices.php

• The Broad Institute Best 
Practices Guidelines

• Tools come from disparate 
sources
– Designed for workstations
– *Few* are performance tuned
– Do not fit well in traditional 

HPC

Variant Discovery as a Workflow
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Outline
• Genomics Primer: Variant Detection

• Kernels for Genomics

• Performance Pathologies in State of the Art Genomics Pipelines

• IGen: The Illinois Genomics Execution Environment
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Computational Kernels
• Computational Kernels: Basic Mathematical Operations common to large number of 

bioinformatics analysis

• Kernels enable system level optimizations effecting a large number of tools

• Clearly show commonalities between different tools performing the same analysis

• Provide an interface between algorithm designers and system designers

– Future benchmarks for data-intensive HPC machines

• Defines a simple data-flow abstraction for non-expert programmers (biologists)
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Kernels
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Single	Ended	NGS	Read	Alignment	as	a	DFG
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Workflow stage Kernels

Error Correction K-mer computation

Alignment K-mer computation, Prefix Tree, Edit-distance computation 

Indel Re-Alignment Edit-distance computation

Re-Calibration Yates correction

Variant Calling Entropy, Convolution, Assembly, Edit-distance, Pair-HMM, 
Bayesian inference

Repeated kernel usage 
across tools/stages

See paper for common kernels across multi-sequence alignment, metagenomics and phylogeny11



Outline
• Genomics Primer: Variant Detection

• Kernels for Genomics

• Performance Pathologies in State of the Art Genomics Pipelines

• IGen: The Illinois Genomics Execution Environment
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Deploying genomics workflows on parallel systems

• Generally deployed based on a map-reduce 
model
– HPC scheduler dependencies
– Apache Hadoop

• Tools cannot scale beyond a single node

• Chunk datasets into logical sections and 
compute in parallel
– By chromosome

• Suffers from load imbalance 

Alignment –
BWA-MEM/SNAP

Merging/Sorting – SAMBAMBA + 
SAMBLASTER

Realignment –
GATK

Variant Calling –
GATK

Merge Outputs –
UNIX cat

Split Reads –
UNIX split

Alignment
Sort by
Chromosome Realignment &

Recalibration
Variant
Calling
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Tools are not well suited for HPC machines
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Understanding Performance Issues
Error 

Correction Alignment Mark Dup,
Re-Al, Re-Cal

Variant
Calling

!

Time

A B A B

Disk	Read Disk	Write Computation

• Unnecessary	
reads	and	writes

• Chains	of	read-compute-write
chains
• Poor	exploitation	of	

parallelism	and	IO	utilization

• Implicit	parallelism	not	
exploited
• No	asynchronous	IO
• Data	parallelism	not	well	

exploited
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Understanding Performance Issues
Manifestation in measurement on Blue-Waters

System	resource	utilization	for	phases	of	the	Broad	Institute	Best	
Practices	Guide	Workflow

Less	than	10%	
CPU	Utilization	
80%	of	the	time

Less	than	1%	IO	
utilization	95%	of	

the	time
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Variant Calling on Spark
• Best performance – Best place to start!

• ADAM: Extremely efficient data formats for parallel compute

ADAM and Avocado

Time Spent in Serialization for ADAM 
based file formats

• Several Problems
- Serialization takes a lot of time
- Easy to program ≠ Good performance
- Single Node performance quite poor, Great Scalability
- Non-trivial (12.3 %) amount of time spent in fault-

tolerance related computation/messaging
- JVM - Garbage collection
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Outline
• Genomics Primer: Variant Detection

• Kernels for Genomics

• Performance Pathologies in State of the Art Genomics Pipelines

• IGen: The Illinois Genomics Execution Environment
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Sequences to Systems
!

!

Alignment Variant-Calling

CPUs

FPGAs

GPUs

HCAs

Analytics Layer
• Algorithmic description of genomic analyses
• Common mathematical kernels

Hardware Layer
• Massively parallel processors
• Specialized hardware

Runtime Layer
• Distributed Memory Primitives
• Remote Procedure Calls
• Distributed Scheduling

HPC Layer
• Measurement driven diagnosis of performance 

issues
• High-performance kernel implementations
• NGS-data handling abstractions

Homogeneous Processors

Distributed Memory

Key Idea: Decouple algorithms, schedule and 
accelerators

• Algorithm: What is computed
• Schedule: Where and when it is computed
• Accelerators: How it is computed
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Task Farm

Send 
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Accelerated Genomics

Analysis

ExEn
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Variant Calling and Genotyping in IGen
Detecting and characterizing mutations in a sample genome

Error 
Correction Alignment Mark Dup,

Re-Al, Re-Cal
Variant
Calling

!

Blue Waters – 22 
Nodes (CPU) - 14.3 hr 3.8 2.3 0.2 4.8 3.1 hr

Blue Waters – 10 
Nodes (CPU) - 48 min 63 min⋇ 12 min

* Whole Human Genome @ 60x coverage
** Default tool parameters

Broad Inst. Best
Practices

IGen
Accelerated
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Enhancements in IGen
• Succinct data representations

– All tools use ASCII based in-memory representations
– Use 2 and 4 bit representation for Nucelotides/CIGAR

• Asynchronous File IO

• Column based data-structures to improve locality and aid vectorization

• Compiler assisted and SIMD intrinsic based implementations of kernels
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Conclusions

• Bringing computer systems and analytics to precision medicine
– ExEn and IGen for accelerated NGS analysis
– NEAT and AssembleSV for quality control of NGS pipelines
– Statistical analysis for deriving actionable intelligence

Image	source:	Google	Images
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CompGen Machine

Timely Diagnosis

Model Drug Response

New Biological Insight

Personalized Drugs

Medical Devices

*omics Data

Continuous Monitoring

Patient Records

Medical
Knowledge
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