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Abstract
Probabilistic models (PMs) are ubiquitously used across a
variety of machine learning applications. They have been
shown to successfully integrate structural prior information
about data and effectively quantify uncertainty to enable the
development of more powerful, interpretable, and efficient
learning algorithms. This paper presents AcMC2, a compiler
that transforms PMs into optimized hardware accelerators
(for use in FPGAs or ASICs) that utilize Markov chain Monte
Carlo methods to infer and query a distribution of posterior
samples from the model. The compiler analyzes statistical
dependencies in the PM to drive several optimizations to
maximally exploit the parallelism and data locality avail-
able in the problem. We demonstrate the use of AcMC2 to
implement several learning and inference tasks on a Xil-
inx Virtex-7 FPGA. AcMC2-generated accelerators provide
a 47 − 100× improvement in runtime performance over a
6-core IBM Power8 CPU and a 8 − 18× improvement over
an NVIDIA K80 GPU. This corresponds to a 753 − 1600×
improvement over the CPU and 248 − 463× over the GPU in
performance-per-watt terms.

CCS Concepts • Computer systems organization →
Parallel architectures; • Hardware → Hardware accel-
erators; • Software and its engineering → Compilers;
Domain specific languages.
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1 Introduction
Many statistical- and machine-learning (ML) applications
automatically detect patterns in data, and then use the un-
covered patterns to predict future data, or to perform other
kinds of decision-making under uncertainty. Probabilistic
models (PMs; e.g., Markov models or Bayesian networks)
and inference techniques have been shown to successfully
integrate prior and structural relationships to quantify this
uncertainty [38]. This allows PMs to naturally complement
many ML methods (like deep learning [26]; DL) that (1) do
not quantify uncertainty in their outputs [23], (2) seldom
produce interpretable results, and (3) do not generalize well
from small datasets or in cases with class imbalance. In fact,
there are ongoing efforts in the ML community to combine
PMs and DL to produce a Bayesian DL paradigm that can
take advantage of both the flexibility of PMs in encoding
model-related information (e.g., uncertainty, interpretability)
with the immense scalability of DL [26].

Creation of optimized accelerators for DL models is well-
developed [1, 11, 35]. The creation of accelerators that can ex-
ecute infernence on PMs in real-time is substantially nonex-
istent, or is done only on a very problem-specific, hand-
optimized basis [6, 7, 15, 32, 34, 36, 42, 49]. Development
of such accelerators is the focus of this paper. They will be
fundamental not just to the addressing of PMs, but also to
the integration PMs and DL.
Development of accelerators for execution of inference

on PMs requires (1) a high-level language representation of
PMs, and (2) a method to map this representation into an
architecture and correspondingly synthesized hardware that
meets the real-time constraints. To address (1) above, we
leverage prior work that proposes probabilistic programming
languages (PPLs) [28] as a way to represent complex PMs as
programs (e.g., [13, 27, 30, 33, 44, 48, 56, 66]).
This paper addresses (2) above by proposing AcMC2, a

compiler that transforms general PMs expressed in a PPL into
optimized hardware accelerators to infer query distributions
(i.e., quantities of interest) over the posterior samples of a PM.
Inference over PMs is analytically intractable in general [16];
therefore, we focus on methods that compute approximate
answers, in particular the sampling-based Markov-Chain
Monte Carlo (MCMC) methods. The crux of our approach
is three fold. (1) We identify and accelerate common com-
putational kernels used across multiple models. In the case
of MCMC-based inference, that corresponds to the use of
multiple types of random number generators. (2)We use mar-
ginal and conditional independences to maximally exploit
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the parallelism and data locality available in the structure of
a PM for its inference. (3) We integrate the above pieces with
compositional MCMC techniques, i.e., where different vari-
ants of basic MCMC algorithms can be integrated together
to solve an inference problem.1 AcMC2 then automatically
generates HDL that corresponds to system-on-chip (SoC)
components that can be integrated into CPU-based SoCs, FP-
GAs, or ASICs, which can then be used in both large servers
and embedded devices.

Contributions. Our primary contributions are
1. We present a compiler workflow for generating hardware

accelerators (both their architecture and implementation)
from PMs described in PPLs. The compiler uses:
a. Conditional statistical independences (captured using

Markov blankets) in a PM to generate maximally paral-
lel, deeply pipelined, problem-specific random number
generators.

b. Speculative execution to execute several independent
MCMC chains in parallel on the generators above.

c. Bounded approximation techniques that reduce off-chip
bandwidth for storage of intermediate results.

2. We describe an FPGA-based prototype (on a Xilinx Virtex
7 FPGA) for AcMC2-generated accelerators that commu-
nicate to host CPUs (IBM POWER8) by using the CAPI
interface [58].

3. We demonstrate AcMC2’s performance using a set of PPL
micro-benchmarks. The AcMC2-generated accelerators
provided an average 46.8× improvement in runtime and
a 753.5× improvement in terms of performance-per-watt
over CPU-based software implementations.

4. We illustrate the generality of AcMC2 by solving two
real-world problems that require real-time analytics.
a. Precision Medicine: Identification of seizure-generating

brain regions through analysis of electroencephalo-
grams (EEGs) [63].

b. Datacenter Security: Detecting data-center-scale secu-
rity incidents by analysis of alerts generated from
network- and host-level security monitoring tools [12].

We demonstrate a 48.4 − 102.1× improvement in perfor-
mance over a CPU baseline; and a 8.6−18.2× improvement
in performance over a NVIDIA K80 GPU.
Placing AcMC2 in Perspective. Traditional methods

have been unsuccessful at addressing the challenge of ac-
celerating the execution of inference in PMs. (1) Optimiz-
ing compilers and high-level synthesis engines [46] (HLS;
C/C++ to HDL compilers) have used control and data depen-
dences in programs to drive parallelism and SIMD optimiza-
tions [2, 50]. That approach is inherently limited because
it analyzes only the inference procedure (i.e., the program
that is executed), and not the dependence (and hence the
parallelism) available in the PM. (2) General-purpose acceler-
ators like GPUs have limited success with MCMC algorithms
that are inherently sequential (i.e., compute as a chain of

1For example, we use Gibbs sampling [24] for discrete variables, and Hamil-
tonian Monte Carlo (HMC) [51] for continuous variables when gradient
information is available.

steps) and present significant branch divergence across mul-
tiple chains. (3) The use of domain-specific languages (DSLs)
to describe parallel patterns [37, 53] that generate efficient
code/accelerators have not shown much promise, as they do
not offer the abstractions required to easily represent PMs.
As a result, accelerated applications for PMs have gener-
ally required manual optimization on a problem-by-problem
basis, e.g., [6, 7, 15, 32, 34, 36, 42, 49]. In contrast, AcMC2

effectively analyzes statistical properties of the PM at com-
pile time and is able to achieve significant parallelism that
the traditional methods described above are not designed to
accomplish.

2 Background
2.1 Bayesian Modeling
AcMC2 considers PMs with joint distribution factorization

p(θ, xD ) = p(θ )p(xD |θ ), (1)
wherep(θ ) is a distribution over parametersθ = {θ1, . . . , θm}
called the prior, and p(xD |θ ) is the conditional distribution
of the dataset xD = {[x0,0, . . . , xn,0], . . . , [x0,D , . . . , xn,D ]}
given the parameters θ . Given observed data point x =
[x0, . . . , xn], the goal of an AcMC2 accelerator is to compute
the posterior distribution,

p(θ |x) =
p(θ , x)

p(x)
=

p(θ )p(x |θ )∫
p(θ )p(x |θ )dθ

. (2)

A user can then query this distribution (called an inference)
to obtain required information about the model/data.

For example, consider the use of a commonly used PM to
solve the problem of clustering a set of points into K clusters.
Here, the PM models how we believe the observations are
generated. For instance, one explanation might be 1. that
there are K cluster centers chosen randomly according to
some distribution, and 2. that each data point (independent
of all other data points) is normally distributed around a
randomly chosen cluster center. That explanation describes
what is known as a Gaussian mixture model (GMM). We can
then query this model to ask, “What is the number of clusters
for a given dataset under this model?” or “What is the most
likely cluster assignment for a data point under the model?”2
Application characteristics often bring additional latent

structure to the density factorization shown in (1). In the
example above, the explanation of the generative process
defines this latent structure. Prior work at the conjunction of
graph theory and probability theory has developed a power-
ful formalism called factor graphs (FGs) [38]. An FG factorizes
(1) into C sets of dependent variables:

p(x1, . . . , xn, θ1, . . . , θm) =

∏
c ∈C fc (xc )∫

· · ·
∫ ∏

c ∈C fc (xc )dθ1 . . .dθm
,

where we use the shorthand xc = {xi |i ∈ C}, and fc repre-
sents factor functions describing the statistical relationships
between different xc s. Overall, FGs provide an intuitive and
compact representation to parse out the independences.
2Fig. 2 shows the AcMC2 workflow of the model described above.
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Algorithm 1: Generic Hastings sampler.
Input : Initial distribution D ,

Proposal distribution q,
Number of samples N ,
Number of burn-in samples b

Output :Samples from target distribution p
1 Initialize X0 = {X 1

0 , . . . , X
n
0 } from some distribution D

2 for i ← [1, N ] do
3 Generate X ∼ q(X |Xi−1)
4 Generate α such that

α = min
{
1, p(X )q(Xi−1 |X )

p(Xi−1)q(X |Xi−1)

}
5 Xi ←

{
X with probability α
Xi−1 with probability 1 − α

6 return (Xb+1, . . . , XN )

Inference. Probabilistic inference is the task of deriving
the probability that one or more random variables will take
a specific value or set of values. Inference tasks are gen-
erally structured as in (2), where a set of variables θ are
being queried over a PM described by p(θ, x). Inference is
analytically intractable for general PMs [16]. Therefore, ap-
proximate Bayesian inference methods have become popular.
These approximations can be divided into two categories:
variational inference andMonte Carlo methods. In this paper,
we focus on the second method.

2.2 MCMC Methods & Hastings Samplers
MCMC presents a direct method for simulating samples from
the posterior distribution in (1) or estimating other properties
of the distribution. The idea behind MCMC is to have a
Markov chain whose stationary distribution is the target
distribution; then, samples can be generated by simulating
the chain until convergence. In practice, it is common to
discard samples from the chain before it converges. This
stage is referred to as the burn-in stage.
In particular, we consider the Hastings sampler [29] (de-

scribed in Algorithm 1) that generates sample candidates
from a proposal distribution q that is generally different
from the target distribution p (above). The algorithm then
decides whether to accept or reject candidates based on an
acceptance test (α ).

α = min
{
1, p(x

′) × q(x |x ′)

p(x) × q(x ′ |x)

}
Here x and x ′ represent the current and proposed values,
respectively. The choice q and the acceptance test produce a
variety of MCMC methods, e.g., Gibbs sampling and HMC.

We consider three variants of the Hastings sampler. The
simplest variant is the Metropolis-Hastings algorithm [29,
47], which combines a Gaussian random walk proposal
with an accept-reject test as described above. In general
this method scales poorly with increasing dimension and
complexity of the target distribution. The Gibbs sampling
variant [24] utilizes the structure of the target distribution
by taking its element-wise conditional distribution as the
transition proposal, forcing the conditionals (in Line 3 of

Algorithm 1) to be analytically computable. The third vari-
ant, called HMC [51] uses Hamiltonian dynamics [41] (H )
to define a continuous-time transition (i.e., p(θ, ρ |x)) and
the stationary distribution of the corresponding Markov
chain. To sample from p(θ |x), HMC introduces an auxil-
iary momentum variable ρ with the same dimensionality
as θ , and effectively samples from the joint distribution
p(θ, ρ |x) = p(θ |x) exp{− 1

2ρ
TM−1ρ}, where M is called the

mass matrix. Samples are generated by simulating
∂θ

∂t
= ∇ρH and ∂ρ

∂t
= ∇θH . (3)

3 Approach Overview
The §(3)–§(7) describe the AcMC2 system. The key optimiza-
tions that drive the system are:
1. Identification of dependences between variables in a PM

by constructing and identifying non-intersecting Markov
blankets, and use of this information to build parallel
multidimensional random number generators.

2. Use of the dependences from (1) and MCMC update strate-
gies to enable concurrent speculative execution of mul-
tiple proposal distribution samples and acceptance tests,
thereby creating a maximally parallel execution plan.

3. Finally, use of bounded approximation provided by count-
ing bloom filters to optimally utilize the on-chip memory
for staging intermediate results.

Fig. 1 illustrates the workflow that integrates the above opti-
mizations. We briefly describe each of its components below.

Compiler Frontend ( 1 in Fig. 1). The compiler fron-
tend converts a high-level PPL program (in our case, PMs ex-
pressed in the BLOG programming language [48]) into an FG
that is used in the following steps of the workflow. FGs [39]
allow the description of general probability distributions
and subsume all other probability-modeling formalisms [22].
AcMC2 is decoupled from the choice of frontend PPL lan-
guage through the use of this IR. We describe this stage
further in §4.

Sampling Element Builder ( 2 in Fig. 1). Using the IR
generated from the PPL program, AcMC2 first computes a
partition of the input FG such that different MCMC update
strategies (e.g., Gibbs sampling, HMC) are applied to different
portions of the PM. The partition strategy is based on a
heuristic approach, unless otherwise specified by the user.
For each partition, we separately optimize an accelerated
sampling element (SE) by identifying the parallelism that is
available in the model through the identification of statistical
independences. We describe this process in detail in §5.

Hardware Templates ( 4 in Fig. 1). Several components
of the hardware accelerators are reused across PMs. They
include random number generators (RNGs; e.g., following
uniform, Gaussian and exponential distributions); arithmetic
operators (e.g., floating point adders and multipliers); inter-
faces to off-chip memory; and host memory. We call those
components templates, and pre-design them to make op-
timal trade-offs between on-chip resource utilization and
performance. In this paper, we consider optimizations of
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Figure 1. Overview of the AcMC2 approach. Boxes shown in gray represent third-party components integrated into AcMC2.

these templates for Xilinx FPGA devices. We describe these
templates in §5.2.

Controller Builder ( 3 in Fig. 1). We construct Con-
trollers to synchronize the actions of SEs. For example, to
ensure maximal parallelism in the sampling process, we exe-
cute several chains of MCMC samplers in parallel, as well as
speculatively sample propsal distributions in a single MCMC
chain. Aggregation (mixing) of these results identifies the
probability distribution (i.e., a histogram) corresponding to a
user’s query. We describe these optimizations further in §6.

Hardware Generation ( 5 in Fig. 1). In the final step of
the AcMC2 workflow, the above statistical relationships and
hardware templates are combined together in an execution
schedule for an accelerator. A statically generated schedule
significantly simplifies the generated hardware. We then use
the Chisel [5] to automatically generate HDL corresponding
to the computed schedule. The Chisel-generated Verilog can
then be fed into a traditional hardware synthesis workflow.
We describe the hardware synthesis process in detail in §7.

4 Compiler Front-End
4.1 The BLOG Language
BLOG [48] represents a strongly typed first-order program-
ming language that can be used to define probability distri-
butions over worlds with unknown numbers of variables.
Fig. 2 illustrates the mapping from a statistical model describ-
ing a Gaussian mixture model (GMM; used for clustering
data) in BLOG to the underlying FG representation, and its
correspondence to the final accelerator generated by AcMC2.

WhyBLOG? Research into PPLs has resulted in the devel-
opment of several languages (e.g., [13, 27, 30, 44, 48, 66]) that
allow users to describe PMs as programs. These PPLs can be
categorized into two groups. The first is DSLs that are embed-
ded in higher-level languages like Lisp (for Church [27]) or
Python (for PyMC3 [56]). The second group (which includes
BLOG) consists of essentially standalone languages (with
their own interpreters and compilers). The first group of
languages is unsuitable for hardware synthesis, as solutions
to the PPLs’ synthesis must necessarily include solutions
to the “high-level synthesis” problems of the higher-level
language in which they are embedded (e.g., dealing with
unbounded recursion, unbounded loops, and library calls).

That was the primary motivation for selection of BLOG as
the front-end language for AcMC2. Further, among the sec-
ond group of languages, BLOG is one of the few PPLs that
can represent PMs that contain both discrete and continuous
random variables.

Extensions to BLOG. The BLOG language (and com-
piler [67]), however, has one drawback. It has no method for
describing abstract inputs without binding them to particu-
lar values. For example, in Fig. 2, the obs keyword is used to
describe both the input and its value. We have extended the
language by adding an input keyword to define formally
named inputs that will be made available at runtime. These
inputs correspond to input ports on the AcMC2-generated
SEs. Outputs are defined using the query keyword.

4.2 FG Generation
AcMC2 uses the lexer and parser of the BLOG compiler pre-
sented in [67] to generate an abstract syntax tree (AST) of
the input BLOG program.3 We then proceed as follows:
1. Identify query statements in the AST, replacing themwith

new variables. We will use these new variables to define
named outputs in later steps of the workflow.

2. Search the AST for subtrees for arithmetic expressions
that can be statically evaluated (i.e., deterministic code
containing constant values) and evaluate them.

3. The AST is traversed to find a list of deterministic vari-
ables/functions (i.e., those which are not randomly gen-
erated) in the model. This identification is done based on
the type of the variable or the return type of the function.
AcMC2 statically composes these deterministic variables/
functions with other random functions, so as to build an
FG with only random components.

4. Convert the AST into an FG by associating each BLOG
function with a factor function, and its inputs and outputs
with associated random variables.

5. Apply variable elimination [38] to the FG to reduce the size
and complexity of the FG. This method is roughly equiva-
lent to static function execution and dead code elimination
in traditional compilers. Note that variable eliminations
that lead to marginal probability distributions that cannot
be directly sampled are dropped.

3It does so after adding the extension keyword input mentioned above.
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<latexit sha1_base64="VDLWZ32Axw0D8PLCgCxVMPXx+BU=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxZNUNLbQhrLZbtqlm03YnQg19Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/naXlldW19dJGeXNre2e3srf/YJJMM+6zRCa6FVLDpVDcR4GSt1LNaRxK3gyHVxO/+ci1EYm6x1HKg5j2lYgEo2ilu6eu6laqbs2dgiwSryBVKNDoVr46vYRlMVfIJDWm7bkpBjnVKJjk43InMzylbEj7vG2pojE3QT49dUyOrdIjUaJtKSRT9fdETmNjRnFoO2OKAzPvTcT/vHaG0UWQC5VmyBWbLYoySTAhk79JT2jOUI4soUwLeythA6opQ5tO2Ybgzb+8SPzT2mXNuz2r1m+KNEpwCEdwAh6cQx2uoQE+MOjDM7zCmyOdF+fd+Zi1LjnFzAH8gfP5A9xSjb8=</latexit><latexit sha1_base64="VDLWZ32Axw0D8PLCgCxVMPXx+BU=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxZNUNLbQhrLZbtqlm03YnQg19Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/naXlldW19dJGeXNre2e3srf/YJJMM+6zRCa6FVLDpVDcR4GSt1LNaRxK3gyHVxO/+ci1EYm6x1HKg5j2lYgEo2ilu6eu6laqbs2dgiwSryBVKNDoVr46vYRlMVfIJDWm7bkpBjnVKJjk43InMzylbEj7vG2pojE3QT49dUyOrdIjUaJtKSRT9fdETmNjRnFoO2OKAzPvTcT/vHaG0UWQC5VmyBWbLYoySTAhk79JT2jOUI4soUwLeythA6opQ5tO2Ybgzb+8SPzT2mXNuz2r1m+KNEpwCEdwAh6cQx2uoQE+MOjDM7zCmyOdF+fd+Zi1LjnFzAH8gfP5A9xSjb8=</latexit><latexit sha1_base64="VDLWZ32Axw0D8PLCgCxVMPXx+BU=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxZNUNLbQhrLZbtqlm03YnQg19Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/naXlldW19dJGeXNre2e3srf/YJJMM+6zRCa6FVLDpVDcR4GSt1LNaRxK3gyHVxO/+ci1EYm6x1HKg5j2lYgEo2ilu6eu6laqbs2dgiwSryBVKNDoVr46vYRlMVfIJDWm7bkpBjnVKJjk43InMzylbEj7vG2pojE3QT49dUyOrdIjUaJtKSRT9fdETmNjRnFoO2OKAzPvTcT/vHaG0UWQC5VmyBWbLYoySTAhk79JT2jOUI4soUwLeythA6opQ5tO2Ybgzb+8SPzT2mXNuz2r1m+KNEpwCEdwAh6cQx2uoQE+MOjDM7zCmyOdF+fd+Zi1LjnFzAH8gfP5A9xSjb8=</latexit><latexit sha1_base64="VDLWZ32Axw0D8PLCgCxVMPXx+BU=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxZNUNLbQhrLZbtqlm03YnQg19Cd48aDi1X/kzX/jts1BWx8MPN6bYWZemEph0HW/naXlldW19dJGeXNre2e3srf/YJJMM+6zRCa6FVLDpVDcR4GSt1LNaRxK3gyHVxO/+ci1EYm6x1HKg5j2lYgEo2ilu6eu6laqbs2dgiwSryBVKNDoVr46vYRlMVfIJDWm7bkpBjnVKJjk43InMzylbEj7vG2pojE3QT49dUyOrdIjUaJtKSRT9fdETmNjRnFoO2OKAzPvTcT/vHaG0UWQC5VmyBWbLYoySTAhk79JT2jOUI4soUwLeythA6opQ5tO2Ybgzb+8SPzT2mXNuz2r1m+KNEpwCEdwAh6cQx2uoQE+MOjDM7zCmyOdF+fd+Zi1LjnFzAH8gfP5A9xSjb8=</latexit>

N
<latexit sha1_base64="K2jQJpJ5kCi6jNIbZDOOmb5ln0M=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL55KC8YW2lA220m7drMJuxuhlP4CLx5UvPqXvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnSSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmd+6wmV5om8N+MUg5gOJI84o8ZKzXqvXHGr7hxklXg5qUCORq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+aFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noOphwmWYGJVssijJBTEJmX5M+V8iMGFtCmeL2VsKGVFFmbDYlG4K3/PIq8S+qN1WveVmp1fM0inACp3AOHlxBDe6gAT4wQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBGL2Msg==</latexit><latexit sha1_base64="K2jQJpJ5kCi6jNIbZDOOmb5ln0M=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL55KC8YW2lA220m7drMJuxuhlP4CLx5UvPqXvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnSSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmd+6wmV5om8N+MUg5gOJI84o8ZKzXqvXHGr7hxklXg5qUCORq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+aFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noOphwmWYGJVssijJBTEJmX5M+V8iMGFtCmeL2VsKGVFFmbDYlG4K3/PIq8S+qN1WveVmp1fM0inACp3AOHlxBDe6gAT4wQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBGL2Msg==</latexit><latexit sha1_base64="K2jQJpJ5kCi6jNIbZDOOmb5ln0M=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL55KC8YW2lA220m7drMJuxuhlP4CLx5UvPqXvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnSSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmd+6wmV5om8N+MUg5gOJI84o8ZKzXqvXHGr7hxklXg5qUCORq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+aFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noOphwmWYGJVssijJBTEJmX5M+V8iMGFtCmeL2VsKGVFFmbDYlG4K3/PIq8S+qN1WveVmp1fM0inACp3AOHlxBDe6gAT4wQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBGL2Msg==</latexit><latexit sha1_base64="K2jQJpJ5kCi6jNIbZDOOmb5ln0M=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL55KC8YW2lA220m7drMJuxuhlP4CLx5UvPqXvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnSSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmd+6wmV5om8N+MUg5gOJI84o8ZKzXqvXHGr7hxklXg5qUCORq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+aFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noOphwmWYGJVssijJBTEJmX5M+V8iMGFtCmeL2VsKGVFFmbDYlG4K3/PIq8S+qN1WveVmp1fM0inACp3AOHlxBDe6gAT4wQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBGL2Msg==</latexit>

⇡
<latexit sha1_base64="e0nuCiOnWhrXTg+1J9laJeriIOc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL56kgrGFNpTNdtIu3d2E3Y1QQv+CFw8qXv1F3vw3Jm0OWn0w8Hhvhpl5YSK4sa775VRWVtfWN6qbta3tnd29+v7Bg4lTzdBnsYh1N6QGBVfoW24FdhONVIYCO+HkuvA7j6gNj9W9nSYYSDpSPOKM2kLqJ7w2qDfcpjsH+Uu8kjSgRHtQ/+wPY5ZKVJYJakzPcxMbZFRbzgTOav3UYELZhI6wl1NFJZogm986Iye5MiRRrPNSlszVnxMZlcZMZZh3SmrHZtkrxP+8XmqjyyDjKkktKrZYFKWC2JgUj5Mh18ismOaEMs3zWwkbU02ZzeMpQvCWX/5L/LPmVdO7O2+0bss0qnAEx3AKHlxAC26gDT4wGMMTvMCrI51n5815X7RWnHLmEH7B+fgG9iuNwQ==</latexit><latexit sha1_base64="e0nuCiOnWhrXTg+1J9laJeriIOc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL56kgrGFNpTNdtIu3d2E3Y1QQv+CFw8qXv1F3vw3Jm0OWn0w8Hhvhpl5YSK4sa775VRWVtfWN6qbta3tnd29+v7Bg4lTzdBnsYh1N6QGBVfoW24FdhONVIYCO+HkuvA7j6gNj9W9nSYYSDpSPOKM2kLqJ7w2qDfcpjsH+Uu8kjSgRHtQ/+wPY5ZKVJYJakzPcxMbZFRbzgTOav3UYELZhI6wl1NFJZogm986Iye5MiRRrPNSlszVnxMZlcZMZZh3SmrHZtkrxP+8XmqjyyDjKkktKrZYFKWC2JgUj5Mh18ismOaEMs3zWwkbU02ZzeMpQvCWX/5L/LPmVdO7O2+0bss0qnAEx3AKHlxAC26gDT4wGMMTvMCrI51n5815X7RWnHLmEH7B+fgG9iuNwQ==</latexit><latexit sha1_base64="e0nuCiOnWhrXTg+1J9laJeriIOc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL56kgrGFNpTNdtIu3d2E3Y1QQv+CFw8qXv1F3vw3Jm0OWn0w8Hhvhpl5YSK4sa775VRWVtfWN6qbta3tnd29+v7Bg4lTzdBnsYh1N6QGBVfoW24FdhONVIYCO+HkuvA7j6gNj9W9nSYYSDpSPOKM2kLqJ7w2qDfcpjsH+Uu8kjSgRHtQ/+wPY5ZKVJYJakzPcxMbZFRbzgTOav3UYELZhI6wl1NFJZogm986Iye5MiRRrPNSlszVnxMZlcZMZZh3SmrHZtkrxP+8XmqjyyDjKkktKrZYFKWC2JgUj5Mh18ismOaEMs3zWwkbU02ZzeMpQvCWX/5L/LPmVdO7O2+0bss0qnAEx3AKHlxAC26gDT4wGMMTvMCrI51n5815X7RWnHLmEH7B+fgG9iuNwQ==</latexit><latexit sha1_base64="e0nuCiOnWhrXTg+1J9laJeriIOc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL56kgrGFNpTNdtIu3d2E3Y1QQv+CFw8qXv1F3vw3Jm0OWn0w8Hhvhpl5YSK4sa775VRWVtfWN6qbta3tnd29+v7Bg4lTzdBnsYh1N6QGBVfoW24FdhONVIYCO+HkuvA7j6gNj9W9nSYYSDpSPOKM2kLqJ7w2qDfcpjsH+Uu8kjSgRHtQ/+wPY5ZKVJYJakzPcxMbZFRbzgTOav3UYELZhI6wl1NFJZogm986Iye5MiRRrPNSlszVnxMZlcZMZZh3SmrHZtkrxP+8XmqjyyDjKkktKrZYFKWC2JgUj5Mh18ismOaEMs3zWwkbU02ZzeMpQvCWX/5L/LPmVdO7O2+0bss0qnAEx3AKHlxAC26gDT4wGMMTvMCrI51n5815X7RWnHLmEH7B+fgG9iuNwQ==</latexit>

µk
<latexit sha1_base64="OLSVe4XESHjJZjsgf7pCvzU6lMM=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5EULuAjZVE8EwgOcLeZpMs2d07dueEcOQ32Fio2PqH7Pw3bpIrNPpg4PHeDDPz4lQKi77/5ZVWVtfWN8qbla3tnd296v7Bg00yw3jIEpmYdkwtl0LzEAVK3k4NpyqWvBWPr2d+65EbKxJ9j5OUR4oOtRgIRtFJYVdlvXGvWvPr/hzkLwkKUoMCzV71s9tPWKa4RiaptZ3ATzHKqUHBJJ9WupnlKWVjOuQdRzVV3Eb5/NgpOXFKnwwS40ojmas/J3KqrJ2o2HUqiiO77M3E/7xOhoPLKBc6zZBrtlg0yCTBhMw+J31hOEM5cYQyI9ythI2ooQxdPhUXQrD88l8SntWv6sHdea1xW6RRhiM4hlMI4AIacANNCIGBgCd4gVdPe8/em/e+aC15xcwh/IL38Q1MsI6U</latexit><latexit sha1_base64="OLSVe4XESHjJZjsgf7pCvzU6lMM=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5EULuAjZVE8EwgOcLeZpMs2d07dueEcOQ32Fio2PqH7Pw3bpIrNPpg4PHeDDPz4lQKi77/5ZVWVtfWN8qbla3tnd296v7Bg00yw3jIEpmYdkwtl0LzEAVK3k4NpyqWvBWPr2d+65EbKxJ9j5OUR4oOtRgIRtFJYVdlvXGvWvPr/hzkLwkKUoMCzV71s9tPWKa4RiaptZ3ATzHKqUHBJJ9WupnlKWVjOuQdRzVV3Eb5/NgpOXFKnwwS40ojmas/J3KqrJ2o2HUqiiO77M3E/7xOhoPLKBc6zZBrtlg0yCTBhMw+J31hOEM5cYQyI9ythI2ooQxdPhUXQrD88l8SntWv6sHdea1xW6RRhiM4hlMI4AIacANNCIGBgCd4gVdPe8/em/e+aC15xcwh/IL38Q1MsI6U</latexit><latexit sha1_base64="OLSVe4XESHjJZjsgf7pCvzU6lMM=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5EULuAjZVE8EwgOcLeZpMs2d07dueEcOQ32Fio2PqH7Pw3bpIrNPpg4PHeDDPz4lQKi77/5ZVWVtfWN8qbla3tnd296v7Bg00yw3jIEpmYdkwtl0LzEAVK3k4NpyqWvBWPr2d+65EbKxJ9j5OUR4oOtRgIRtFJYVdlvXGvWvPr/hzkLwkKUoMCzV71s9tPWKa4RiaptZ3ATzHKqUHBJJ9WupnlKWVjOuQdRzVV3Eb5/NgpOXFKnwwS40ojmas/J3KqrJ2o2HUqiiO77M3E/7xOhoPLKBc6zZBrtlg0yCTBhMw+J31hOEM5cYQyI9ythI2ooQxdPhUXQrD88l8SntWv6sHdea1xW6RRhiM4hlMI4AIacANNCIGBgCd4gVdPe8/em/e+aC15xcwh/IL38Q1MsI6U</latexit><latexit sha1_base64="OLSVe4XESHjJZjsgf7pCvzU6lMM=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5EULuAjZVE8EwgOcLeZpMs2d07dueEcOQ32Fio2PqH7Pw3bpIrNPpg4PHeDDPz4lQKi77/5ZVWVtfWN8qbla3tnd296v7Bg00yw3jIEpmYdkwtl0LzEAVK3k4NpyqWvBWPr2d+65EbKxJ9j5OUR4oOtRgIRtFJYVdlvXGvWvPr/hzkLwkKUoMCzV71s9tPWKa4RiaptZ3ATzHKqUHBJJ9WupnlKWVjOuQdRzVV3Eb5/NgpOXFKnwwS40ojmas/J3KqrJ2o2HUqiiO77M3E/7xOhoPLKBc6zZBrtlg0yCTBhMw+J31hOEM5cYQyI9ythI2ooQxdPhUXQrD88l8SntWv6sHdea1xW6RRhiM4hlMI4AIacANNCIGBgCd4gVdPe8/em/e+aC15xcwh/IL38Q1MsI6U</latexit>

K
<latexit sha1_base64="jtt9Y7+pis6GvfXwHHZnea3mg/U=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgLRhbaEPZbKft2s0m7G6EEvoLvHhQ8epf8ua/cdvmoK0PBh7vzTAzL0wE18Z1v53Cyura+kZxs7S1vbO7V94/eNBxqhj6LBaxaoVUo+ASfcONwFaikEahwGY4up76zSdUmsfy3owTDCI6kLzPGTVWatx2yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZodOyIlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr6l0HGZZIalGy+qJ8KYmIy/Zr0uEJmxNgSyhS3txI2pIoyY7Mp2RC8xZeXiX9Wvap6jfNK7S5PowhHcAyn4MEF1OAG6uADA4RneIU359F5cd6dj3lrwclnDuEPnM8fFDSMrw==</latexit><latexit sha1_base64="jtt9Y7+pis6GvfXwHHZnea3mg/U=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgLRhbaEPZbKft2s0m7G6EEvoLvHhQ8epf8ua/cdvmoK0PBh7vzTAzL0wE18Z1v53Cyura+kZxs7S1vbO7V94/eNBxqhj6LBaxaoVUo+ASfcONwFaikEahwGY4up76zSdUmsfy3owTDCI6kLzPGTVWatx2yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZodOyIlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr6l0HGZZIalGy+qJ8KYmIy/Zr0uEJmxNgSyhS3txI2pIoyY7Mp2RC8xZeXiX9Wvap6jfNK7S5PowhHcAyn4MEF1OAG6uADA4RneIU359F5cd6dj3lrwclnDuEPnM8fFDSMrw==</latexit><latexit sha1_base64="jtt9Y7+pis6GvfXwHHZnea3mg/U=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgLRhbaEPZbKft2s0m7G6EEvoLvHhQ8epf8ua/cdvmoK0PBh7vzTAzL0wE18Z1v53Cyura+kZxs7S1vbO7V94/eNBxqhj6LBaxaoVUo+ASfcONwFaikEahwGY4up76zSdUmsfy3owTDCI6kLzPGTVWatx2yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZodOyIlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr6l0HGZZIalGy+qJ8KYmIy/Zr0uEJmxNgSyhS3txI2pIoyY7Mp2RC8xZeXiX9Wvap6jfNK7S5PowhHcAyn4MEF1OAG6uADA4RneIU359F5cd6dj3lrwclnDuEPnM8fFDSMrw==</latexit><latexit sha1_base64="jtt9Y7+pis6GvfXwHHZnea3mg/U=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgLRhbaEPZbKft2s0m7G6EEvoLvHhQ8epf8ua/cdvmoK0PBh7vzTAzL0wE18Z1v53Cyura+kZxs7S1vbO7V94/eNBxqhj6LBaxaoVUo+ASfcONwFaikEahwGY4up76zSdUmsfy3owTDCI6kLzPGTVWatx2yxW36s5AlomXkwrkqHfLX51ezNIIpWGCat323MQEGVWGM4GTUifVmFA2ogNsWypphDrIZodOyIlVeqQfK1vSkJn6eyKjkdbjKLSdETVDvehNxf+8dmr6l0HGZZIalGy+qJ8KYmIy/Zr0uEJmxNgSyhS3txI2pIoyY7Mp2RC8xZeXiX9Wvap6jfNK7S5PowhHcAyn4MEF1OAG6uADA4RneIU359F5cd6dj3lrwclnDuEPnM8fFDSMrw==</latexit>

[K]
<latexit sha1_base64="UDX0XYIPgxIt1L8rJprmCkn8Ne4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgFY0tpKFsttt26WYTdidCCf0JXjyoePUfefPfuG1z0OqDgcd7M8zMi1IpDLrul1NaWl5ZXSuvVzY2t7Z3qrt7DybJNOM+S2Si2xE1XArFfRQoeTvVnMaR5K1odDn1W49cG5GoexynPIzpQIm+YBStdBdch91qza27M5C/xCtIDQo0u9XPTi9hWcwVMkmNCTw3xTCnGgWTfFLpZIanlI3ogAeWKhpzE+azUyfkyCo90k+0LYVkpv6cyGlszDiObGdMcWgWvan4nxdk2D8Pc6HSDLli80X9TBJMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7EheIsv/yX+Sf2i7t2e1ho3RRplOIBDOAYPzqABV9AEHxgM4Ale4NWRzrPz5rzPW0tOMbMPv+B8fAN1NI17</latexit><latexit sha1_base64="UDX0XYIPgxIt1L8rJprmCkn8Ne4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgFY0tpKFsttt26WYTdidCCf0JXjyoePUfefPfuG1z0OqDgcd7M8zMi1IpDLrul1NaWl5ZXSuvVzY2t7Z3qrt7DybJNOM+S2Si2xE1XArFfRQoeTvVnMaR5K1odDn1W49cG5GoexynPIzpQIm+YBStdBdch91qza27M5C/xCtIDQo0u9XPTi9hWcwVMkmNCTw3xTCnGgWTfFLpZIanlI3ogAeWKhpzE+azUyfkyCo90k+0LYVkpv6cyGlszDiObGdMcWgWvan4nxdk2D8Pc6HSDLli80X9TBJMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7EheIsv/yX+Sf2i7t2e1ho3RRplOIBDOAYPzqABV9AEHxgM4Ale4NWRzrPz5rzPW0tOMbMPv+B8fAN1NI17</latexit><latexit sha1_base64="UDX0XYIPgxIt1L8rJprmCkn8Ne4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgFY0tpKFsttt26WYTdidCCf0JXjyoePUfefPfuG1z0OqDgcd7M8zMi1IpDLrul1NaWl5ZXSuvVzY2t7Z3qrt7DybJNOM+S2Si2xE1XArFfRQoeTvVnMaR5K1odDn1W49cG5GoexynPIzpQIm+YBStdBdch91qza27M5C/xCtIDQo0u9XPTi9hWcwVMkmNCTw3xTCnGgWTfFLpZIanlI3ogAeWKhpzE+azUyfkyCo90k+0LYVkpv6cyGlszDiObGdMcWgWvan4nxdk2D8Pc6HSDLli80X9TBJMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7EheIsv/yX+Sf2i7t2e1ho3RRplOIBDOAYPzqABV9AEHxgM4Ale4NWRzrPz5rzPW0tOMbMPv+B8fAN1NI17</latexit><latexit sha1_base64="UDX0XYIPgxIt1L8rJprmCkn8Ne4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FL4IgFY0tpKFsttt26WYTdidCCf0JXjyoePUfefPfuG1z0OqDgcd7M8zMi1IpDLrul1NaWl5ZXSuvVzY2t7Z3qrt7DybJNOM+S2Si2xE1XArFfRQoeTvVnMaR5K1odDn1W49cG5GoexynPIzpQIm+YBStdBdch91qza27M5C/xCtIDQo0u9XPTi9hWcwVMkmNCTw3xTCnGgWTfFLpZIanlI3ogAeWKhpzE+azUyfkyCo90k+0LYVkpv6cyGlszDiObGdMcWgWvan4nxdk2D8Pc6HSDLli80X9TBJMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7EheIsv/yX+Sf2i7t2e1ho3RRplOIBDOAYPzqABV9AEHxgM4Ale4NWRzrPz5rzPW0tOMbMPv+B8fAN1NI17</latexit>
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type Pi; 
#Pi ~ Poisson(2); 
random Pi z(Integer i) ~ UniformChoice({p for Pi p});  
random Real mean(Pi c) ~ UniformReal(-1, 1);  
random Real x(Integer i) ~  
  if z(i) != null then Gaussian(mean(z(i)), 1.0);

query size({p for Pi p}); // Number of clusters
query z(0); // Assignment of data point 0

obs x(0) = 0.2; obs x(1) = 1.0;  // N in number
obs x(2) = 0.5; obs x(3) = 0.7;
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Figure 2. Example of the end-to-end workflow: A Bayesian Gaussian mixture model described as a as a BLOG PPL program,
converted into an HDL-based hardware module that van be integrated as SoC components.

Note that the optimizations listed above resemble traditional
compiler optimizations that most PPL compilers should per-
form. The FG conversion is specific to the problem at hand, as
the downstream steps of AcMC2 expect an FG as input. The
inputs and outputs of the overall process are illustrated in
Fig. 2. Note that we keep track of repetitions of variables and
factor functions in the model that correspond to repeated or
indexed variables in the original BLOG program. Dynamic
PMs (i.e., which express time varying behavior of variables)
are expressed in two parts: (1) the FG corresponding to one
instant of time, and (2) factor functions corresponding to
statistical relationships across timesteps.

The process described above (specifically, Step 4) converts
a directed graphical model into an undirected one (i.e., an FG).
Both of them provide a formalism for representing indepen-
dences; however, each of them can represent independence
constraints that the other cannot. The conversion process
occurs by the construction of a moral graph [38] from the
original directed acyclic graph. If the original PM is moral,
then the converted PM is a perfect map. The moralization
process can cause loss of conditional independence if it in-
troduces new edges. In AcMC2 such a loss does not change
the accuracy of the MCMC, merely the effective amount of
parallelism (described in §5).

5 Sampling Element Design
This section describes an algorithm (“SE Builder” from Fig. 1)
for generating the design of a single SE (see Fig. 3) based on
the input FG. The process has the following steps.
1. Depth-first traversal of the FG identifies a. variables that

will be provided as runtime inputs, b. variables that will
have to be generated by random sampling, and c. output
variables corresponding to a user’s query.

2. Variables that need to be generated through sampling are
identified and partitioned into sets corresponding to their
MCMC proposal and update strategy.

3. AcMC2 then constructs samplers corresponding to the
proposal distributions q. This step identifies conditional
independences in FG that can be used to extract the maxi-
mal parallelism in each of the partitions.
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Figure 3.Architecture of sampling element: The SE design is
based on a compositional Hastings sampler (see Algorithm 1)
that uses Gibbs sampling and HMC updates. Xi is the state
of the sampler in its ith iteration.

4. Using the set of template components available to it,
AcMC2 generates samplers for each of the FG partitions.

After those samplers are executed for their burn-in phases,
the values corresponding to the query variables are extracted,
tabulated, and stored as histograms (as described in §5.3).
Each SE generates a fixed number of samples, which repre-
sents one execution of an MCMC chain. The output of the
“SE Builder” stage is a data-flow graph corresponding to the
high-level schematic in Fig. 3. This data-flow graph does not
incorporate timing information among the different blocks
shown in the figure. Timing is described further in §7.

5.1 Compositional MCMC
Often the high dimensionality of the vectors x and density
q(x ′ |x) being estimated in a Hastings sampler make the sam-
pling process difficult (and, in some cases, intractable). How-
ever, it has been shown that it is possible to find MCMC
updates for x ′ that consist of several sub-steps, each of
which updates one component or a group of components
in x [10, 38]. Finding the optimal division of an FG into
partitions for an arbitrary PM is still an open problem.

AcMC2 relies on a straightforward heuristic to find those
partitions. First, it identifies the variables on which it can
perform Gibbs sampling. This set consists of discrete ran-
dom variables in the model, along with continuous variables
that exhibit conjugacy relationships. A conjugacy relation
implies that a conditional distribution p(θ |x) takes the same
(or an equivalent) functional form as p(θ ). AcMC2’s list of
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Figure 4. Conditional independences of an FG node can be
utilized to identify strategies for parallel execution when a
Gibbs-sampling-based Hastings sampler is used.

conjugacy relationships are built based on [18]. The remain-
ing continuous variables are sampled with HMC. We do not
explicitly use the Metropolis-Hastings sampler, because of
its bad scaling behavior in high-dimensional spaces. A user
can override this heuristic and manually specify partitions.

Gibbs Sampling. Recall that a Gibbs sampler utilizes the
target distribution as its proposal distribution q and also
takes compositional steps, where each step targets the sam-
pling of element-wise conditional distributions. Hence in
each sub-step, where xi is updated with x ′i , the sampler uses
q(x ′i |xi ) = p(xi |x1, . . . , xi−1, xi+1, . . . , xn) = p(xi |x−i ). That
means that in an arbitrary PM, every sub-step must pro-
ceed sequentially. However, in the case of AcMC2, since
the FG already encodes latent structure in the distribution
p(xi |x−1), we can extract conditional independences encoded
in the model to relax the dependency of xi on the set x−i .
We do so through the computation of a Markov blanket Bxi
on the FG. Bxi defines a subset of x−i such that xi is con-
ditionally independent of x−i given Bxi (see Fig. 4). Hence
q(x ′i |xi ) = p(xi |Bxi ), which implies that the sub-steps corre-
sponding to xi can be executed in parallel with x−i \ Bxi .
One can generalize that observation to all nodes in the

FG by studying the graphical structure of the FG. Variables
that are in each other’s Markov blankets (i.e., that share
a common factor function) cannot be sampled in parallel.
Hence, computation of a k-coloring of the FG (i.e., solving
a graph coloring problem on the FG), where variables that
share a factor function are not given the same color, will
give us the maximal parallelism available during the Gibbs
sampling process. Here, k will represent the number of syn-
chronization points in the sampling process. [25] provides
a proof of correctness of the technique. Fig. 4 demonstrates
the property on a factor graph. The coloring is synthesized
into a state machine that drives the “Controller” in Fig. 3.

Hamiltonian Monte Carlo. AcMC2 uses reverse-mode
automatic differentiation [8] to automatically compute the
gradients required in (3) from the joint distribution of the FG.
The current implementation of AcMC2 performs a source-
to-source translation of the symbolic gradients to OpenCL
for high-level synthesis through Xilinx SDAccel [21]. That
allows us to generate optimized data-paths corresponding
to the HMC proposal distribution.

5.2 Template-Based Elements
SE components that are reused across a range of PE models
are provided to AcMC2 as a library of manually designed

Shift Registers

Carry Chain XOR

LUT

(Seed Initialization)

Figure 5.XOR-shift-based FPGA-optimized uniform random
number generator.

template patterns that provide low latency, high throughput,
and low on-chip resource utilization. In our implementation,
all of the template-based components are specialized for
FPGAs (which we use as a prototyping platform). However,
AcMC2 can also be used to generate ASICs by replacing the
template components. We describe these components below.

Random Number Generators. AcMC2’s RNG library
provides three types of generators: (1) uniform RNGs, (2) dis-
crete RNGs corresponding to particular probability mass
function definitions, and (3) RNGs for general probability
distributions (e.g., Gaussian, Exponential). Our minimum re-
quirement for these RNGs is that they be high-quality gener-
ators that pass common statistical tests; they are not required
to be cryptographically secure. The composition of RNGs
across complex PMs ensures that even though we might
exhaust the period of a single RNG, we will never exceed
the period of all the RNGs used in an SE. Further, large PMs
require many RNGs, so they have to use on-chip resources
optimally. Finally, we are interested in RNGs that have de-
terministic performance. For example, rejection-sampling-
based RNGs [14], which might retry an indefinite number of
times before generating a random number, are not suitable
in our use case, because the hardware generation step in the
AcMC2 requires definite latency characteristics to produce a
static schedule of SEs.
The Uniform RNG (see Fig. 5) is the simplest type of ran-

dom number generator available in AcMC2. Our implemen-
tation draws heavily from [61], and represents a modified
XOR-shift [45] generator that is optimized for low resource
usage on FPGAs. The 4-bit RNG completely utilizes a single
logic cell available on an FPGA: it utilizes a 4-input look-up
table (LUT), the XOR-gates from a carry chain adder, and
the output registers to buffer output. Overall it produces a
single 4-bit random number per clock cycle, utilizing only a
single LUT and a single shift register. These RNGs are used
as a source of randomness for the other types of RNGs.

The second type of generator in AcMC2 uses an alias-table-
based strategy [65] to generate discrete random numbers
whose probability distribution is provided at compile time.
Fig. 6 shows the schematic layout for this RNG. It reuses two
uniform RNGs to generate addresses and store them into a
locally stored alias table, which is accessed to retrieve the
value of the random number. The address lookup happens in
two clock cycles; hence, the memory element is duplicated to
ensure a throughput of 1 operation per cycle. The dynamic
range of the probability values in the alias table is set to a
32-bit floating-point number.
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Figure 6. Alias-table-based RNG to generate arbitrary dis-
crete random variables with static distributions.

The final type of RNG used in AcMC2 generates values
from well-known distributions by using the inverse trans-
form method [55]. Fig. 7 shows a schematic of the generator.
This method transforms integer uniform random numbers
into fractional numbers in [0, 1] and then uses the inverse
of the target distribution’s cumulative density function to
generate the required random numbers. The method is com-
putationally intensive, as computing the inverse transform
often requires several floating-point operations, leading to
higher latencies and lower throughputs than the other RNGs
mentioned above. AcMC2 provides support for exponential,
Poisson, Gaussian, and binomial distributions.4 One can add
more RNGs to AcMC2 using template implementations.

5.3 Storing Sampled Results
The final step of the SE pipeline (see Fig. 3) corresponds
to saving the values generated by the SE into Histogram
Memory. It is implemented using on-chip memory as follows.
• When output variables take a finite number of values (i.e.,
types corresponding to the output variable are defined
over finite sets), AcMC2 generates counters corresponding
to each of the values. The counters are incremented when
a corresponding sample is produced.
• When the output variables’ domain corresponds to large
sets, the user is required to annotate a binning criterion
corresponding to each query.
• Binning provides only a partial solution, as there is a lim-
ited amount of on-chip memory for storing histogram
information. Off-chip DRAM provides an attractive alter-
native for storing the histograms; however, write latencies
to DRAM, as well as write contention across multiple SEs,
make the use of DRAM intractable from the point of view
of performance. In order to remove this bottleneck, we al-
low for an approximate solution by using counting Bloom
filters [20] (see Fig. 8). The core idea is to allow for stor-
age of the histograms in an approximate fashion whereby
counts corresponding to some bins can be larger than their
true values, in order to trade off the amount of memory re-
quired to store the values. Counting Bloom filters provide
bounded approximations for storage that allow us to tune
the parameters of the Bloom filters to stay within the noise
margins of the MCMC simulations. A problem with the
Bloom filter approach is that they eventually fill up over
time when they must deal with a large stream of data. As

4The binomial distribution is generated through a look up-table-based
approximation of the distribution’s inverse density function.
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Figure 7. Inverse-transform-based RNGs.

a result, at some point the Bloom filter becomes unusable
due to its high error rates. Hence we need to periodically
checkpoint the state of the Bloom filter (by storing it to
DRAM), and reset it to avoid such problems.

AcMC2 requires a user to actively opt in to any of the above
storage types, annotating an FG model with information
about histogram binning and Bloom filter size. Our imple-
mentation of the counting Bloom filter uses MurmerHash [4].

5.4 Handling Infinite Models
Plate-based models, like the GMM example in Fig. 2, in which
portions of themodel get repeatedmultiple times are handled
by synthesizing SEs that correspond to the plates in the PM.
These SEs are then repeatedly executed based on the plate
specification in the PM. This repetition is encoded into state
machines (in the “Controller” block in Fig. 3), which control
the execution of the proposal distributions across partitions.
Broadly speaking, there can be two types of plates in a model:
plates that repeat based on user input at runtime (e.g., a plate
corresponding to N in Fig. 2), and plates that correspond to
repetitions due to model variables (e.g., a plate corresponding
toK in Fig. 2). AcMC2 automatically handles the second type,
and requires explicit human annotation of the number of
repeats in the first type.

5.5 Importance of RNG Efficiency
RNG efficiency does indeed play a significant role in overall
performance. However, the latency throughput characteris-
tics of these RNGs have to be tuned with other components
of the system to ensure the best performance. We describe
these trade-offs below.

Throughput. Accelerators generated by AcMC2 leverage
data-flow between the RNGs and computational elements
(e.g., adders, multipliers) and matches throughput between
these elements. In most cases, Xilinx-provided IPs for compu-
tational elements execute at 1 op/cycle, which is matched by
the template-based RNGs described in §5.2. Thus we can gen-
erate MCMC samples at throughputs close to 1 sample/cycle
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for a single SE. Using worse RNGs could impact the overall
throughput of the accelerator and result in SE stalls.

Latency.We prefer high-throughput high-latency RNGs.
Note that there is a trade-off point after which the latency
negatively affects performance: the assumption in this ar-
gument is that a single RNG latency is significantly lower
than DRAM write latency. Guaranteeing high throughput
(1 sample/cycle) often results in increased RNG latency. The
trade-off between sample latency and overall performance
has to be tuned to the performance of the memory system.
For example, the time taken to generate the output histogram
of an SE has to be greater than the time taken to write
that histogram to onboard DRAM (i.e., the accelerator is
not memory-bound). In fact, we use double buffering of his-
togram writes (see Fig. 8) to effectively hide the increased
RNG latency. An improved memory system on the FPGA
board could alleviate these problems.

6 Controller Design
AcMC2 uses multiple independent instances of the Hastings
sampler executed in parallel to generate several target dis-
tributions. The final results can then be aggregated from
individual samplers. Further, multiple SEs can be used to
speculatively execute future steps of Hastings chains in par-
allel. The “Controller Builder” block from Fig. 1 identifies
the scope of that parallelism and constructs a controller that
can coordinate the execution of SEs to enable the above opti-
mizations. Fig. 9 illustrates the integration of the controller
and SEs into a single accelerator.

Ensemble Samplers. Individual MCMC chains have in-
ternal serial dependence; however, multiple chains can be
computed in parallel to generate several independent esti-
mates of the target PM posterior distribution. The final result
is calculated by pooling the results of these different chains
(i.e., by aggregating the output sample histograms from all
the chains). This corresponds to exploiting the embarrass-
ingly parallel nature of the MCMC process. Overall, this
optimization improves throughput and accuracy of the infer-
ence process. The only drawback is that each sampler has an
independent burn-in phase, so that the number of redundant
burn-in samples grows linearly with the number of ensem-
ble samplers employed. We achieve this optimization in the
generated accelerator by generating multiple instances of
the single-Controller and multiple-SE block (see Fig. 9).

Speculative and Predictive Evaluation. Hastings sam-
plers show branching behavior, i.e., possible random walks
explored by the samplers form a branch tree. An MCMC
chain will traverse several paths (corresponding to the pro-
posal distributions) in this branch tree, but will eventually
take only a single path (corresponding to a successful accep-
tance test). That provides a scope for exploiting parallelism
through speculation. For example, in depth-first traversal, a
generated sample is assumed to be accepted, and its subtree is
generated speculatively. Similarly, in breadth-first traversal,
a sample is assumed to be rejected, and other samples from
the same level are generated speculatively. In contrast to

prior work in statistics (e.g., [3, 57]) that adopted the depth-
first approach presented above, AcMC2 uses the breadth-first
approach, as the generated hardware is much simpler. All
SEs are set to start with one initial state; thereafter, each SE
explores individual samples from the proposal distribution.
When an SE generates a value that passes the acceptance
test, it broadcasts the new state value to all other SEs, and
proceeds with the next step in its own pipeline. The con-
troller arbitrates the bus and ensures race-free executions.
Some aspects of the depth-first approach are captured in
each individual SE’s pipeline, where, as soon as a proposal
value is generated, the next level of the branch tree can start
execution in the pipeline.

Other auxilliary functions of the controller include:
1. Initialization: The controller initializes all SEs with the

seeds required to start random number generation, and
computes the initial starting state of the Hastings sampler
(which is generated from a Gaussian distribution).

2. Bus Scheduling: The controller acts as an arbiter to give
individual SEs the ability to write data to the multicast
bus (described further in §7.2).

3. Batching: If a dataset is being used that is larger than the
available memory on the accelerator, the data have to be
divided into batches, and the inference has to be run one
batch at a time. The controller is responsible for copying
input batches from the host memory to the accelerator.

4. Moving Results to Host Memory: The controller is respon-
sible for moving the final outputs of the MCMC chains
(i.e., histograms generated over the user query) from the
on board DRAM on which it is stored to the host memory
space. Doing so involves aggregating the counting Bloom
filters from each of the ensemble samplers.
Communication between the controller and SEs is encap-

sulated in an AXI-Stream protocol. That protocol allows us
to decouple the controller from the SEs and synthesize them
separately, relying on the communication protocol between
them to ensure synchronization properties.

7 Accelerator Synthesis
The final step of the AcMC2 workflow converts the data flow
graph corresponding to an SE into a synthesizable Chisel
model, which can then be fed into traditional FPGA/ASIC
synthesis flows.

7.1 Scheduling
The scheduler is responsible for converting the SE data-flow
graph into a cycle-by-cycle schedule for a given set of re-
source constraints. AcMC2 uses this schedule to generate
synchronization between inputs and outputs of stages of
the compositional MCMC SE (see Fig. 3). AcMC2 uses the
As-Soon-As-Possible scheduling algorithm (based on [40]) to
compute such schedules. The scheduling algorithm works
by scheduling an operation as soon as all of its predeces-
sor operations (in the data-flow graph) have completed. The
maximum number of parallel operations permitted are de-
fined by resource constraint parameters fed in by the user.
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Figure 9. Architecture of the generated accelerator, including SEs, controllers, and host-accelerator communication.

AcMC2 generates the design for a single SE that accommo-
dates this schedule. Note that the scheduling procedure in
AcMC2 does not consider resource limitations or routing
issues between SE components – these decisions are left to
the subsequent synthesis flow (recall from §3).

7.2 Overall Accelerator Design
The SE data-flow graph, along with its static schedule, is con-
verted into a Chisel HDL-based description of an SE pipeline.
Through the use of the cycle counts for operations in the
SE design, a Chisel HDL description of the Controller (de-
scribed in §6) is also generated. These units then interface
with off-chip DRAM and host-memory interfaces to produce
the final probabilistic inference accelerator. The overall ar-
chitecture of the accelerator is shown in Fig. 9. We describe
the remaining components of the accelerator next.

Broadcast-Based NoC for SEs. AcMC2 uses a template-
based, bus-based network-on-chip (NoC) design to enable
point-to-point and broadcast messaging between the Con-
troller, SEs, and DRAM controllers. The bus uses an AXI-
Stream-based communication protocol for data transfer.
Fig. 9 shows the design of the routers used in the network.
To read from the bus, a router matches its local identifier to
that of the stream being sent on the bus and connects the SE
to the bus if there is a match. Writing to the bus is mediated
by the controller in a single-writer, multiple-reader protocol.

Host-Accelerator Communication. AcMC2 uses the
IBM Coherent Accelerator Processor Interface (CAPI) [58]
for Power8 processors to facilitate host-accelerator commu-
nication. CAPI is layered over PCIe and provides low-latency,
high-speed device-to-host memory transfers. In particular,
CAPI simplifies the generated host CPU code, reduces de-
pendency on DMA drivers, and eliminates the need for page-
pinning and bounce buffering to extract high performance
from the underlying PCIe bus. A DMA and MMIO controller
for the IBM Power Service Layer (PSL; the IBM IP compo-
nent that interfaces with the accelerator) is provided as a
template for the accelerator. This interface is used to send
inputs to the accelerator, receive inputs from the accelerator,
and initialize the accelerator with seed values for RNGs. The
PSL and DMA/MMIO interfaces are clocked at 250 MHz, and
the remainder of the accelerator is clocked at 400 MHz.
Host-accelerator communication can be of the following

types. 1. In the batch data transfer mode, the host loads the

input dataset into host memory, from which the accelerator
reads data in batches. Similarly, outputs are transferred to
a host buffer. 2. In the streaming data transfer mode, the
host and accelerator share circular buffers corresponding
to inputs and outputs. Synchronization between host and
accelerator is ensured using CAPI’s atomic operations. In
both cases, the accelerator is initialized with the addresses of
the input/ouptut buffers. The accelerator actively prefetches
new data (in cacheline-sized 128-byte chunks) and adds it
into the input FIFOs (see Fig. 9) for further processing.

8 Evaluation and Discussion
Experimental Setup. AcMC2 has been implemented in
∼ 2k lines of Scala. The templates used in the compiler were
developed in System Verilog and use IPs from Xilinx to imple-
ment single-precision floating-point math operators, BRAM
blocks, an off-chip DRAM interface, and shift registers. The
accelerator communicates with the host through the IBM
CAPI interface [9, 58]. All generated accelerators (and CPU
baselines) were evaluated on an IBM Power8 S824L system
with an Alpha-Data ADM-PCIE-7V3 FPGA board (with Xil-
inx Virtex 7 XC7VX690T FPGA) and an NVIDIA K80 GPU.

8.1 Comparison With CPU-Based PPLs
As a first-level comparison, we compared the runtime of
accelerators generated through AcMC2 with common bench-
marks that are used to evaluate PPLs. We used the set of
benchmarks from [48, 67], which represent tests over a wide
set of PPL features available in BLOG. They are indicative of
performance, as they compare the performance of AcMC2-
generated accelerators to that of accelerators generated by
CPU-based PPL compilers. However, these benchmarks do
not represent complex the PMs that a user would encounter
in the real world. We consider such real-world problems (and
their implementations on GPUs and HLS compilers) in §8.2.

A performance comparison of the techniques is shown in
Fig. 10, and a comparison of peak power usage is presented in
Table 1. Power usage estimates of the generated accelerators
are collected from the Xilinx Vivado tools and via the S824L’s
in-built “system-level” power measurement infrastructure.5
Power estimates for CPU-based code were made based on
5The system reports power measurements averaged over 30s intervals. We
measure a distribution of power consumption when the system was idling,
and when the accelerator was being used.
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Figure 10. Comparison of runtime performance for AcMC2-
generated accelerators with PM inference on other PPLs
(normalized to Blog(Swift) [67] compiler).

publicly available TDP values. In all cases, the programs were
instrumented to run 2 million samples before stopping. Over-
all, we observed an average speedup of 46.8× and an average
reduction in power of 16.1× (which corresponds to an over-
all improvement of 753× in terms of performance-per-watt).
We observe that FPGA BRAM utilization was the dominant
resource used, as seen in Table 1. Note that all performance
measurements presented above were collected over 1000
runs of each of the programs, to amortize OS costs in process
creation and setting up of communication through CAPI.
The GMM benchmark uses the counting Bloom filter approx-
imation described in §5.3. It infers the distribution of the
number of mixture components, as well as the distribution
of means and variances for each mixture component. The
histograms corresponding to the means and variances are
stored in the Bloom filter; in each case, a 1000-bin histogram
was stored in 100 counters and checkpointed/refreshed every
10000 samples. All benchmarks used the batch data-transfer
model for host-accelerator communications. The number
of ensemble samplers was limited to 4 to ensure that each
sampler was mapped to a single onboard memory DIMM.

Overall, Fig. 10 and Table 1 suggest that when there is no
unbounded repetition in the PM, AcMC2-generated acceler-
ators fare better (with respect to both runtime performance
and power usage) with discrete variable PMs. That is ex-
pected, because (1) the use of continuous distributions (even
if they have conjugacy relationships) requires expensive
floating-point computations to compute inverse transforms,
which significantly increases the latency of the RNGs and
results in higher resource cost; and (2) unbounded worlds
require re-execution of the MCMC chain (i.e., the SE) with
different (sampled) initial worlds. It is important to note
that the performance comparison across Church, BLOG,
and Swift also compares the overhead of the language run-
times: Church uses Lisp [27], BLOG uses Java [48], Swift
uses C++ [67]. AcMC2 does not have any of these overheads.

8.2 Real-World Case Studies
Case Study 1: Epilepsy SoZ Localization. We applied
AcMC2 to a PM [63] that is used to infer characteristics of
human-brain activity by using electroencephalogram (EEG)
sensors, with the goal of identifying brain regions respon-
sible for the onset of epilepsy. [63] presents a generative
FG model that estimates brain activity and localizes it to a
particular EEG sensor, allowing clinicians to identify regions

Table 1. Power and resource utilization for benchmark
BLOG programs. Numbers of SEs are described as x × y:
x is the number of controllers and y is the SEs per controller.

Power (Watts)

Benchmark CPU Vivado Measured # of SEs BRAM %

Burglary 190 10.1 16.3 ± 2.1 4 × 4 35%
Hurricane 190 10.3 16.8 ± 1.9 4 × 4 31%
Tug of War 190 12.5 19.4 ± 3.1 4 × 4 38%

Ball 190 12.9 19.3 ± 2.6 4 × 4 41%
GMM 190 14.1 15.3 ± 3.4 4 × 4 46%

EEG-Graph 190 11.8 15.8 ± 3.8 4 × 8 64%

of the brain (called seizure onset zones or SoZs) that show
pathological behavior like epileptic seizures. This applica-
tion represents a typical use of PMs in the field of precision
medicine, where data are obtained from medical sensors in
a streaming fashion and used to make decisions in real time.

Case Study 2: Network Security. The second real-world
problem for which we show the application of AcMC2 is in
the domain of network security. Here, a PM [12] is used to
describe the relationships between user intent (i.e., whether
a user is benign, suspicious, or malicious and represents a
threat to the integrity of a networked computer system) and
events observed by security monitors (e.g., networkmonitors
like Bro [52]). Using these statistical relationships, [12] aims
to infer the user state given real-time data from the security
monitors. This application represents the typical use of PMs
to build “intelligent” compute-embedded network devices
like network interface cards (NICs) or switches that can
automatically detect and preempt malicious intrusions.
For each of the case studies described above, we con-

structed (1) a BLOG program and (2) an OpenCL program
corresponding to the model. The OpenCL programwas hand-
tuned to use the model-specific optimizations presented in
§5 and §6. Two separate versions of this program were cre-
ated, using compiler-specific attributes targeting NVIDIA’s
OpenCL and Xilinx’s SDAccel compilers. In both cases, the
CPU baseline corresponds to software obtained from the orig-
inal authors. Note that the CPU baselines represent research
software, which, as such, might not be perfectly tuned to the
system architecture. However, that is a common situation
for research software for which an underlying compiler is
expected to perform meaningful performance optimizations.

Why these models? (1) These models represent real–
world applications of PMs in performance-critical applica-
tions across varied application domains. (2) These models
use a large subset of the PPL language features: discrete and
continuous random variables, distribution conjugacy rela-
tionships, and unbounded dynamic models that obey the
Markov property. (3) Further, they represent challenging
situations for AcMC2 because they use multivariate factor
functions in relatively small FGs. The PM is relatively densely
connected so that the generation of random samples in the
Gibbs sampling-based SE is almost completely serialized.

Comparisons to CPU: Case Study 1. The generated
accelerator can infer the query posterior distribution for a 3s
chunk of input EEG data in an average of∼ 41.8ms compared
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Figure 11. Accuracy (in terms of precision and recall)
of the EEG-GRAPH energy minimization method (labeled
Original) vs. the MCMC accelerator generated by AcMC2.

to the CPU baseline, which uses 4.3s (i.e., it does not meet
the 3s real time requirement of the applications). Following
Little’s Law, a single FPGA accelerator would be able process
71 ≈ 3s/41.8ms patients in parallel in real-time. That is the
largest accelerator configuration we have successfully fit
onto the FPGA. Fig. 11 shows the difference in accuracy
between the original EEG-GRAPH technique and the AcMC2

accelerator. Overall there is a drop in accuracy from an f-
score6 of 0.47 to one of 0.465. That can be attributed to the
approximate nature of the MCMC procedure. The method
proposed in [63] uses exact inference procedures based on
energy minimization, which might produce marginally more
accurate answers.

Comparisons to CPUs: Case Study 2. The AcMC2-
generated accelerator performed the inference at the rate
of 0.4 ms/event. That is ∼ 48.4× faster than the CPU-based
implementation in [12]; here, an event corresponds to the out-
put security monitor. The CPU implementation uses thread-
ing as well as high-performance math libraries that are opti-
mized for the SIMD and memory locality. In this case, the
approximate Bloom filter optimization did not affect the sta-
tistical correctness of the output (i.e., 74.2% true-positive rate,
98.5% true-negative rate, 1.5% false-positive rate, and 25.8%
false negative rate).
All our experiments were setup to use the same number

of accepted samples. The number of samples was chosen in
each case to ensure that theMCMC procedure would be close
to convergence. However, the approximate nature of MCMC
implies that independent runs do not give the same answers.
To verify the correctness of our generated acclerators, we
performed a Kolmogorov-Smirnov test across the CPU, GPU,
and AcMC2 implementations to ensure that the sampled dis-
tributions were identical with high probability. Tables 2 and 3
show a comparison of power and FPGA resource utilization
for the case studies presented above.

OpenCL Comparison: Code Complexity. Table 4
shows a comparison of the complexity of the AcMC2 and
OpenCL accelerators in terms of lines of code (LoC). For
example, in Case Study 1, compared to the AcMC2 accel-
erator, which is described in 183 LoC. The GPU and FPGA
6The f-score is two times the harmonic mean of precision and recall. An
F-Score can take values between [0, 1], with 1 being the best possible score.

Table 2. Performance & power consumption improvements.
Power (Watts)

Benchmark Perf. CPU CPU Vivado Measured # of SEs

Case Study 1 102.1× 190 11.8 19.3 ± 3.7 4 × 8
Case Study 2 48.4× 190 10.4 11.2 ± 0.8 4 × 8

Table 3. Summary of FPGA resource utilization.
BRAM DSP FF LUT

Av. % Av. % Av. % Av. %

Case Study 1 1470 64% 3600 49% 866400 22% 43200 50%
Case Study 2 1470 83% 3600 29% 866400 34% 43200 61%

Av. = Available on FPGA

OpenCL require 622 and 961 LoC, respectively. Their added
complexity is derived from writing memory and synchro-
nization code on the GPU. In the case of the FPGA, explicit
code annotation (e.g., __attribute__ directives), statically
bound loops and other code snippets is used to force effective
pipelining. In addition to LoC, the expertise (of the under-
lying hardware system) required to construct the OpenCL
version clearly emphasizes the superiority of AcMC2.

OpenCL Comparison: Performance (GPUs & FP-
GAs). Table 4 further shows a comparison between perfor-
mance and power requirements for the four configurations.
For each case study, performance has been normalized to
that of the GPU. We observe that the AcMC2-generated ac-
celerators performed 8 − 18× better than the K80 GPU and
248 − 462× better in performance-per-Watt terms. We spec-
ulate that the reduced performance resulted from (1) control
divergence between threads that were exploring separate
parts of the MCMC search space, and (2) throughput-opti-
mized RNG libraries that perform better when they have to
generate a batch of values rather than the single values used
in MCMC’s inherently sequential random walks. We drew
these conclusions based on the rejection-sampling-based al-
gorithms used in the GPU implementations; i.e., the kernels
generate several RNs and accept/reject a fraction of them,
which means that the control flow is different on different
threads. Further, the GPU libraries for RNGs work by gener-
ating batches of RNs; they are later consumed to generate
samples for the MCMC. Thereby maximizing the throughput
of RNG but not the throughput of the MCMC computation.
The exact measurement of divergence in this case is difficult
to make as the mapping between PTX and SASS is unknown
on NVIDIA devices. Measurement on a microarchitectural
simulator might not lead to exact results.
The HLS-generated FPGA accelerator performs an order

of magnitude worse than the AcMC2 and GPU implemen-
tations, in terms of absolute performance terms. There are
multiple reasons: (1) the accelerator can attain a maximum
clock speed 163 MHz, while the AcMC2-generated accelera-
tor can achieve 400 MHz; and (2) the automatically generated
XOR-shift RNGs are higher-latency and lower-throughput
than the 1-RNG-per-cycle generators described in §5.

Choice of CPU Baseline. In our measurements Intel
Xeon E5 CPUs performed less than 6 − 8% better than the
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Table 4. Comparing complexity and performance of AcMC2-
generated accelerators with that of OpenCL accelerators.

NVIDIA K80 GPU FPGA

Implementation LoC Perf. Power (W) LoC Perf. Power (W)

AcMC2- CS 1 – – – 183 18.2× 11.8
OpenCL - CS 1 622 1× 300 (TDP) 961 0.2× 14.2

AcMC2- CS 2 – – – 146 8.6× 10.4
OpenCL - CS 2 586 1× 300 (TDP) 8984 0.8× 15.6

CS = Case Study; Performance normalized to GPU implementation.

IBM Power8. Our choice of that baseline did not change our
conclusions. However, the use of the CAPI-based interface
for host-accelerator communication significantly simplified
the implementation (recall §7.2). The Power8 and Xilinx
FPGA use different process technologies, i.e., 22nm and 28nm
respectively, and hence it might not be completely fair to
compare their results. However, the decision to use CAPI
limits us to using FPGA boards that are supported by IBM
(with their PSL IP components). We believe that changing
the FPGA technology will not change our performance (as
the 250 Mhz clock should be replicable on even newer FPGA
parts); however, performance-per-Watt measurements will
change with the design of the FPGA routing network.

Performance Implications of CAPI. All the mi-
crobenchmarks correspond to transmision of 100−960 KB of
input data to the accelerator for computation. The total time
for these transfers (in streaming mode) is included in the
results presented in the paper and contribute < 10% of the
runtime. We observe in Case Study 2 that the runtime in is
bound by the PCIe messaging latency (which is on the order
of 100 ns for the 128-byte cache-line transferred over PCIe in
CAPI). A real deployment of this accelerator would involve
at least 3 such messages over PCIe, i.e., network interface
card (NIC) to CPU, CPU to the accelerator on the FPGA, and,
finally, returning the result to the CPU. We will address this
communication latency issue in future work.

9 Related Work
Parallelization of Probabilistic Inference. Low et al. [43]
present a distributed computing framework for machine
learning algorithms. They demonstrate the distributed par-
allelization of probabilistic inference using belief propaga-
tion [38]. Gonzales et al. [25] provide a proof of correctness
for parallelization of Gibbs sampling through the use of con-
ditional independences; this motivated our use of Markov
blankets in §5. Recht et al. [54] suggest asynchronous Gibbs
sampling, whereby conditional independences are not hon-
ored by the sampler; [17] provides bounds on the asymp-
totic correctness of such a sampler. [3, 57] provide methods
for speculative execution (called dynamic prefetch) using
biased proposal distributions. We use the approximation
from [41] to generate samples in HMC. Homan and Gelman
[31] present a further-optimized algorithm (which converges
more quickly than traditional HMC with [41]) to generate
samples from the proposal distribution of an HMC. [13] pro-
vides an implementation of [31] in a PPL.

Accelerated Probabilistic Inference. Several prior
FPGA/ASIC efforts solve some form of probabilistic infer-
ence; however, they cannot be generalized to apply to all PMs.
For example, [36] proposes an architecture for LDPC code en-
coding/decoding; [6, 7, 34] propose architectures for several
bioinformatics applications; [15] proposes an architecture
for image segmentation; and [49] proposes an architecture
for inference on a class of state space models. In comparison,
AcMC2 has the ability to generate accelerators for general
PMs expressed in the BLOG language. The use of GPUs in
MCMC has been explored, but only for particular applica-
tions, e.g., in [19, 59, 60]. [42] comes closest to AcMC2. It
describes the design of an FPGA-based accelerator and a
compiler to target the acceleration of belief propagation in
Bayesian networks. In contrast, AcMC2 can be applied to
a much larger set of PMs. [64] explores the use of analog
circuits to perform statistical inference.

Hardware Generators. AcMC2 uses the Chisel HDL [5]
to generate RTL corresponding to the accelerator. Other HDL
generators, e.g., [37, 53], provide higher-level constructs that
can be used to declare and annotate the parallelism available
in a program; they cannot be used directly with PMs as PPLs.

Programming Language Design. [62] proposes Ed-
ward, a PPL for Bayesian neural networks (BNN) proba-
bilistic inference that uses variational inference techniques
with MCMCmethods. It utilizes Tensorflow’s [1] GPU-based
tensor operations, and potentially Google’s TPUs [35]. [11]
provides an optimized architecture for inference (which in-
cludes both variational inference and MCMC) on BNNs with
Gaussian priors. In comparison, AcMC2 only targets MCMC
applications and cannot handle variational inference.

10 Conclusion & Future Work
This paper presented the design and evaluation of AcMC2, a
compiler that can transform PMs expressed in the BLOG PPL
into optimized accelerators that compute inference queries
by using an ensemble of MCMC methods. We believe that
AcMC2 significantly simplifies the process of constructing
workload-optimized accelerators for executing inference on
PMs, making the benefits of such optimization available to
a larger group of researchers. As a result, AcMC2 forms the
basis for creating future high-performance SoCs for AI ap-
plications that can be deployed as edge devices or in clouds.

Future Work. The design of AcMC2-generated accelera-
tors in this paper assumes that the PMmodels being compiled
fit on a single FPGA. It is not impossible to conceive of a
PM for which that assumption would fail. We believe a solu-
tion will involve the distributed execution of the ensemble
samplers over multiple FPGAs and unreliable network links.
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