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The Software Component: Symphony
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Conclusions

• Presents the design of the CompGen system at UIUC
• Targeted at data analytics in the healthcare domain
• Analytics tools and methods
• Computer system architecture and design

• System consists of
1. Hardware Component: The Computational Genomics Accelerator (TCGA)
2. Software Component: Symphony Runtime

• Use intelligent (Bayesian) scheduling strategy to
1. Abstract away low-level architectural details
2. Model architectural resource utilization

• Variant Calling and Genotyping as a driving example for the system

Variant Calling and Genotyping

What are the key parameters to consider when designing systems/deploying 
applications to systems?
1. Processor Affinity: Some computations are inherently more efficient on certain 

processor architectures
2. Data Locality: Moving data through the system costs performance and energy
3. Shared Architectural Resource Contention between co-located tasks
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Results

(Baseline “InMem” uses in-memory computation with NVIDIA K80 GPUs)

Human genome runs, reduction in time from 73 
hours to under 45 minutes (baseline: single 2-
socket CPU)
• 88× improved runtime performance
• 210× in terms of performance-per-watt
TCGA presents significant improvement in 
performance
• ~20x increase in throughput
• ~15x decrease in energy consumption

Symphony allows users to maintain level of 
abstraction and minimizes interference between 
co-located jobs

• Demonstrate the use of hardware-software co-
design for computer systems for accelerated data-
analytics
• Efficiency in terms of performance 
• Efficiency in terms of energy efficiency

• Applied to several problems data analytics in 
computational genomics

• Potential application in a broader set of problems

• Identifies and characterizes mutations in NGS data
• Map NGS data to reference genome
• Correct for noisy data
• Differentiate strings in the presence of noise and ploidy

• First phase of the personalized medicine flow
• Recurrently used

• Data intensive part of NGS analytics
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Motivation: Accelerator Centric Computing
• Accelerators are 

becoming  an 
integral part of 
modern computing 
systems

• Programming and 
deploying 
applications on such 
systems is becoming 
increasingly complex

TCGA is a dynamically reconfigurable co-processor that executes computational 
kernels that are ubiquitous in computational genomics applications

• Example: Levenshtein Distance 
Computation, Hidden Markov 
Models

• Prototyped on FPGA boards
• Interfaced with the host processor 

using IBM CAPI

• Probabilistic interpretation of resource utilization and performance of tasks 
running on heterogeneous processors and accelerators

• Reduces to testing probabilistic assertions over a model of applications 
requirements and system architecture. E.g.,

• System is modeled as a Factor Graph
• Factors derived from processor 

performance manuals
• Hidden states’ values computed using 

Bayesian inference

• System state estimator can then 
be coupled with known 
scheduling algorithms
• Measurement driven estimation 

of current system state
• Optimality Guarantees
• Closed feedback loop


