
Symphony: Probabilistic Graphical Models for Scheduling
Heterogeneous Processors

Summary

The Hardware Component: TCGA

This research was supported by several grants: in part by the
National Science Foundation under Grant No. CNS 13-37732; in
part by the Blue Waters sustained-petascale computing project
supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois; and in part
by IBM, Xilinx, Intel for providing equipment support.

Subho S. Banerjee, Steven S. Lumetta, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer
Departments of Computer Science and Electrical and Computer Engineering

The Software Component: Symphony

�

�

��

��

��

��

����� ���� �� ��

�
��
�
��
��
��
�
��
��
��
��
�

��������

����� ������ ������

�
�
�
�
�
��
��
��
��
��
��

� � � � �� �� ��

��
�
��
��
�

������ �� ���

������ ������� ���

�

��

���

��� � ���
��
�
��
��
��
�
��
��
��
��
��
�
��
�

���������� ����������

FPGA

GPU - K80

GPU - K40
Intel Xeon

IBM Power8

�

���

���

���

���

�

���

���
���
�

���
���
���
���

��
���
��
��
�
��
��
��
��
��

��������� ������������

�
�����

������
����

System
Load

Frontend
Load

Speculation
Load

Memory
Load

Retiring
Load

Frontend
Latency

Frontend
Bandwidth

iTLB Miss

iCache Miss

DSB

MITE

Branch
Mispredictions

Branch
Mispredictions

BASE Micro
Sequencer

Divider

Ports

ALU
Load

Backend
Load Mem Bus Load

L1 Load

L2 Load

L3 Load

Stores Load

L.Mem Load

R. Mem Load

R. Cache Load

0 port

1 port
2+ port System Model

App Specifc System Specific

App Model
Number of

Reads
Reads
Length

Median
R. Quality

Median
M. Quality FLOPS

FLOPS/Byte

IOPS/Byte

IntOps/Byte

IO Bytes

To IO Nodes

����������

�������������

�������������������

�����������

�������

��������

������������

�������

���������

��������

�������������

����������

��������

�
�
��

��
��
��

��
��

��
�
��
��

��

��
��

��
��

��
��

��
�
��

�
�

��
���

��
��
��

��
��
��

�

�
��

��
��
�

�
��

��
��

��
��
�

��
��
�
�
�

�
�
��

�
��

��

�
��

��
���

��
���

�
��
��

�
��

�
��

��
��

���

�
��

��
��

�

���
����
���
����
���
����
���
����
�

B

C

C

C

Affinity and
Locality Models

Processor Task Queues

Shared
Resource Model

Symphony Runtime System

CPU

GPU

FPGA

Performance
Monitoring Unit

User DFG

A

Global Task Queue
C1 C2 C1

C2*

Memory Bus
Memory

Controller

DRAM

DRAM + PiM
IO Controller

DRAM

DRAM

System Bus

Peripheral
Device

Peripheral
Accelerator

A

Core

Cache

1

2

3

4

Acknowledgements

Conclusions

• Presents the design of the CompGen system at UIUC
• Targeted at data analytics in the healthcare domain
• Analytics tools and methods
• Computer system architecture and design

• System consists of
1. Hardware Component: The Computational Genomics Accelerator (TCGA)
2. Software Component: Symphony Runtime

• Use intelligent (Bayesian) scheduling strategy to
1. Abstract away low-level architectural details
2. Model architectural resource utilization

• Variant Calling and Genotyping as a driving example for the system

Variant Calling and Genotyping

What are the key parameters to consider when designing systems/deploying
applications to systems?
1. Processor Affinity: Some computations are inherently more efficient on certain

processor architectures
2. Data Locality: Moving data through the system costs performance and energy
3. Shared Architectural Resource Contention between co-located tasks

Funding:

Control
Crossbar

On-board DRAM

Memory
Crossbar

Multiport
Scratchpad
Memory

AFU

IBM Supplied
POWER

Service Layer
(PSL)

Input Cache

Output Cache

Serializer

Processing
Elements

Controller
CAPI

Controller

250 MHz 400 MHz

Kernel Block

DMA Read DMA Write

Control Logic

DMA Read DMA Write

To Kernel

To ICAP/PRC

From KernelReconfiguration
Controller

Memory Crossbar

Exec.
Control

Control
Crossbar

Exec.
Control

Static Blocks Reconfigurable Blocks

Results

(Baseline “InMem” uses in-memory computation with NVIDIA K80 GPUs)

Human genome runs, reduction in time from 73
hours to under 45 minutes (baseline: single 2-
socket CPU)
• 88× improved runtime performance
• 210× in terms of performance-per-watt
TCGA presents significant improvement in
performance
• ~20x increase in throughput
• ~15x decrease in energy consumption

Symphony allows users to maintain level of
abstraction and minimizes interference between
co-located jobs

• Demonstrate the use of hardware-software co-
design for computer systems for accelerated data-
analytics
• Efficiency in terms of performance
• Efficiency in terms of energy efficiency

• Applied to several problems data analytics in
computational genomics

• Potential application in a broader set of problems

• Identifies and characterizes mutations in NGS data
• Map NGS data to reference genome
• Correct for noisy data
• Differentiate strings in the presence of noise and ploidy

• First phase of the personalized medicine flow
• Recurrently used

• Data intensive part of NGS analytics

Error Correction

Read Mapping
Alignment/Assembly

Realignment, Dedup
Recalibration

Variant Calling
SNP

Variant Calling
Structural Variations

!

!

NGS Sequencing

P

Utilization | T1~T2, M
80%P

P (U � 80%|T1 T2,M) � 90%

Motivation: Accelerator Centric Computing
• Accelerators are

becoming an
integral part of
modern computing
systems

• Programming and
deploying
applications on such
systems is becoming
increasingly complex

TCGA is a dynamically reconfigurable co-processor that executes computational
kernels that are ubiquitous in computational genomics applications

• Example: Levenshtein Distance
Computation, Hidden Markov
Models

• Prototyped on FPGA boards
• Interfaced with the host processor

using IBM CAPI

• Probabilistic interpretation of resource utilization and performance of tasks
running on heterogeneous processors and accelerators

• Reduces to testing probabilistic assertions over a model of applications
requirements and system architecture. E.g.,

• System is modeled as a Factor Graph
• Factors derived from processor

performance manuals
• Hidden states’ values computed using

Bayesian inference

• System state estimator can then
be coupled with known
scheduling algorithms
• Measurement driven estimation

of current system state
• Optimality Guarantees
• Closed feedback loop

